
Lightweight Functional Logic Meta-Programming

Nada Amin1, William E. Byrd2, and Tiark Rompf3

1 Harvard University, USA (namin@seas.harvard.edu)
2 University of Alabama at Birmingham, USA (webyrd@uab.edu)

3 Purdue University, USA (tiark@purdue.edu)

Abstract. Meta-interpreters in Prolog are a powerful and elegant way
to implement language extensions and non-standard semantics. But how
can we bring the benefits of Prolog-style meta-interpreters to systems
that combine functional and logic programming? In Prolog, a program
can access its own structure via reflection, and meta-interpreters are
simple to implement because the “pure” core language is small. Can we
achieve similar elegance and power for larger systems that combine dif-
ferent paradigms?
In this paper, we present a particular kind of functional logic meta-
programming, based on embedding a small first-order logic system in an
expressive host language. Embedded logic engines are not new, as exem-
plified by various systems including miniKanren in Scheme and LogicT
in Haskell. However, previous embedded systems generally lack meta-
programming capabilities in the sense of meta-interpretation. Indeed,
shallow embeddings usually do not support reflection.
Instead of relying on reflection for meta-programming, we show how to
adapt popular multi-stage programming techniques to a logic program-
ming setting and use the embedded logic to generate reified first-order
structures, which are again simple to interpret. Our system has an ap-
pealing power-to-weight ratio, based on the simple and general notion of
dynamically scoped mutable variables.
We also show how, in many cases, non-standard semantics can be realized
without explicit reification and interpretation, but instead by customiz-
ing program execution through the host language. As a key example, we
extend our system with a tabling/memoization facility. The need to in-
teract with mutable variables renders this a highly nontrivial challenge,
and the crucial insight is to extract symbolic representations of their side
effects from memoized rules. We demonstrate that multiple independent
semantic modifications can be combined successfully in our system, for
example tabling and tracing.

1 Introduction

An appealing aspect of pure logic programming is its declarative nature. For
example, it is easy to take a formal system, expressed as inference rules on
paper, and turn it into a logic program. If the formal system describes typing
rules, the same logic program might be able to perform type checking, type
reconstruction, and type inhabitation. Yet, we want more.

2 Amin, Byrd, Rompf

First, we would like to leverage abstractions known from functional program-
ming to structure our logic programs. Where logic programming sports search,
nondeterminism, and backwards computation, functional programming excels at
parameterization, modularity and abstraction. These strengths are complemen-
tary, and there is great value in combining them, as evidenced by a large body of
ongoing research. Languages such as Curry [17] focus on integrating functional
and logic programming into one coherent declarative paradigm.

Second, we would like to customize the execution of logic programs. For
example, we want to be able to reason about both failures and successes. In case
of success, we may want a proof, i.e., a derivation tree, for why the relation holds.
In case of failure, feedback is even more important, and yet, by default, a logic
program that fails is one that returns no answers. In Prolog, these tasks can be
solved through meta-programming, which, in the context of this paper, means to
implement a meta-interpreter for Prolog clauses. A meta-interpreter for “pure”
Prolog clauses, written in Prolog, can customize the search strategy, inspect
proof trees or investigate failures [34, 35]. However, for non-trivial applications
such as abstract interpretation [10], these meta-interpreters do not usually stick
to the “pure” Prolog subset themselves. In many cases, for example if we want to
extend the execution logic with tabling or memoization, it is necessary to exploit
decidedly un-declarative and imperative features of Prolog—in some sense the
“dirty little secret” of logic programming.

In this paper, we present a pragmatic solution to combining functional and
logic programming on one hand, and declarative logic programming with re-
stricted notions of state on the other hand. We make the case for a particular
style of functional logic meta-programming: embedding a simple, first-order logic
programming system in an expressive, impure, higher-order functional host lan-
guage, optionally supported by best-of-breed external constraint solver engines
such as Z3 [25] or CVC4 [2], and providing explicit support for dynamically
scoped, i.e., “thread-local” state. In the tradition of miniKanren [4, 6, 5, 13, 14],
which embeds logic programming in Scheme, we present Scalogno, a logic pro-
gramming system embedded in Scala, but designed from the ground up with
modularity and customization in mind and with explicit support for dynami-
cally scoped mutable variables.

This paper makes the following contributions:

– We introduce our system, Scalogno, and highlight the benefit of deep linguis-
tic reuse in logic programming based on examples, e.g., how higher-order
functions of the host language can model higher-order relations (e.g., map,
flatMap, fold). The logic engine can remain first order, keeping theory and
implementation simple. Scalogno can reuse Scala’s type classes (e.g., Ord),
while the logic engine need not be aware of this feature at all. This flexibility
goes beyond dedicated functional logic languages like Curry, which do not
support type classes for complexity reasons [24] (Section 2).

– Tracing, proof trees, etc. are examples of a whole class of use cases where
a meta-interpreter augments execution with some state. We introduce dy-
namically scoped mutable variables to capture this design pattern, enabling

Lightweight Functional Logic Meta-Programming 3

modular extensions through the host language as an alternative to explicit
interpretation. We discuss the implementation of Scalogno in more detail,
and also show how dynamic variables support a generic term reification fa-
cility, directly adapting popular multi-stage programming approaches to a
logic setting (Section 3).

– We show how we can customize the execution order while maintaining the
behavior of other extensions that rely on dynamic mutable state. To this
end, we extend our logic engine to implement tabling, i.e., memoization.
Unlike most existing Prolog implementations (there are exceptions [11]),
the implementation directly corresponds to a high-level description of the
tabling process, understood in terms of continuations. A key challenge is
to interact with mutable variables, which we solve by extracting symbolic
representations of their side effects from memoized rules. To the best of our
knowledge, ours is the first logic engine that integrates tabling with mutable
state in a predictable way (Section 4).

Section 5 discusses related work and Section 6 offers concluding thoughts. Our
code is available at aplas19.namin.net.

2 Embedded Logic Programming

When embedding a language into an expressive host, we benefit from deep lin-
guistic reuse: we can keep the embedded language simple by directly exploiting
features of the host language. In this section, we illustrate deep linguistic reuse
with Scalogno in Scala—the embedded logic system is first-order, and re-uses the
host language for key features such as naming and structuring logic fragments.

2.1 Relations as Functions

As a running example, we model a graph connecting three nodes 𝑎, 𝑏, 𝑐 in a
cycle.

a

bc

In Prolog (on the left), we can model this graph with a relation, edge, listing
all the possible edges. In Scalogno (on the right), we can define the same relation
as a regular Scala function:

edge(a,b).
edge(b,c).
edge(c,a).

def edge(x: Exp[String],
y: Exp[String]): Rel =

(x === "a") && (y === "b") ||
(x === "b") && (y === "c") ||
(x === "c") && (y === "a")

4 Amin, Byrd, Rompf

In Scalogno, infix methods are used for unification (===), conjunction (&&)
and disjunction (||). The type Rel represents a relation, while the type Exp[T]

represents a term (possibly including unbound logic variables) of type T.
We can now run a query on the just defined relation.

| ?- edge(X,Y).
→˓ X=a,Y=b; X=b,Y=c; X=c,Y=a.

run[(String,String)] {
case Pair(x,y) => edge(x,y) }

→˓ pair(a,b); pair(b,c); pair(c,a).

In Scalogno, we apply the edge relation like any ordinary function. The run

form serves as an interface between the host and the embedded language, re-
turning an answer list of reified values of the variable it scopes. Here, we directly
use pattern matching to introduce the variables x and y as a pair. We can also
use the exists form to explicitly introduce new logical variables in scope, as in
the next example.

In Prolog, we can naturally define relations recursively, and so too in Scalogno.
For example, the relation path finds all the paths in the graph.

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

def path(x: Exp[T], y: Exp[T]):
Rel = edge(x,y) ||
exists[T] { z => edge(x,z) &&

path(z,y) }

| ?- path(a,Q).
→˓ Q=b; Q=c; ...

runN[String](10) { q =>
path("a",q) }

→˓ b; c; a; b; c; a; b; c; a; b.

Here, asking for all answers (with run instead of runN) would diverge as
there are infinitely many paths through the cycle. In Section 3, we show how to
cope with this divergence by changing the evaluation semantics through meta-
programming.

2.2 Higher-Order Relations as Higher-Order Functions

In Scalogno, we can exploit higher-order functions (and hence, relations too), for
example parameterizing the relation path by the relation edge so that it works
for any graph:

def generic_path(edge: (Exp[T],Exp[T]) => Rel)(x: Exp[T], y: Exp[T]): Rel =
edge(x,y) || exists[T] { z => edge(x,z) && generic_path(edge)(z,y) }

We could also recognize that the path relation is really just the reflexive tran-
sitive closure of the edge relation, and since generic_path is already parameterized
over an arbitrary binary relation, rename it accordingly as refl_trans_closure.
This enables defining path as:

val path = refl_trans_closure(edge)

The usual higher-order combinators, such as map, flatMap, and fold also have
natural higher-order relational counterparts.

Lightweight Functional Logic Meta-Programming 5

2.3 Object-Oriented Encapsulation

To enable additional abstractions that are not present in typical logic program-
ming settings, we can exploit the object-oriented features of the host language:

trait Graph[T] {
def edge(x: Exp[T], y: Exp[T]): Rel // left abstract
def path(x: Exp[T], y: Exp[T]): Rel = // defined as before
edge(x,y) || exists[T] { z => edge(x,z) && path(z,y) }}

val g = new Graph[String] {
def edge(x:Exp[String],y:Exp[String]) = // defined as before
(x === "a") && (y === "b") ||
(x === "b") && (y === "c") ||
(x === "c") && (y === "a") }

The object g inherits the definition of path from Graph.
We can also use the pattern known as ‘type classes as objects and implic-

its’ [28], for example to support a relational ordering on polymorphic lists.

3 Dynamic Scope as Meta-Interpreter (Design Pattern)

Here is the recipe for Prolog-style meta-interpreters in Scala: a meta-interpreter
(a Scalogno relation itself) is configured with a Scalogno meta-relation to build
a reified representation of a Scalogno object-relation (e.g. path). In other words,
we stay completely in the realm of logic programming.

In this section, we consider a different approach: use the host language to
augment the execution of logic programs by customizing the logic engine directly.
For this approach to be viable, the logic embedding has to be designed with cer-
tain kinds of extensions in mind. Within Scalogno, for example, it is difficult to
use mutable state because the execution order uses various flavors of interleav-
ing, as opposed to Prolog’s deterministic Selective Linear Definite (SLD) clause
resolution. But of course interleaving is desirable, so we would like a model that
supports a notion of “thread local” state that is attached to a particular execution
path, similar to notions of state in Or-parallel logic programming [16].

3.1 Designing Logic Engines for Meta-Programming

In designing the Scalogno implementation, we have put emphasis on modular-
ity and enabling independent extensions of different parts of the system. An
overview of the core Scalogno system is shown in Figure 1, and we discuss indi-
vidual aspects step by step below.

Our starting point is an implementation of a Depth-First Search (DFS) en-
gine, where we reuse the host control flow (stack and exception) to manage the
pending goals. Nevertheless, Scalogno is modular and supports a range of search
strategies, as well as external solvers.

The engine knows generically about goals and their state. A goal is repre-
sented as a thunk of a relation. A relation knows how to execute itself via the

6 Amin, Byrd, Rompf

val Backtrack = new Exception

// dynamically scoped variables
var dvars: immutable.Map[Int, Any] =

immutable.Map.empty
case class DVar[T](val id: Int,

val default: T) extends (() => T) {
dvars += id -> default
def apply() = dvars(id).asInstanceOf[T]
def :=(v: T) = dvars += id -> v }

var dvarCount = 1
def DVar[T](v: T): DVar[T] = {
val id = dvarCount
dvarCount += 1
new DVar[T](id, v) }

// goals and relations
trait Rel {
def exec(call: Exec)(k: Cont): Unit }

type Exec = Goal => Cont => Unit
type Cont = () => Unit
type Goal = () => Rel

// unconditional ...
val Yes = new Rel { // ... success
def exec(call: Exec)(k: Cont) = k() }

val No = new Rel { // ... failure
def exec(call: Exec)(k: Cont) =

throw Backtrack }

def infix_&&(a: => Rel, b: => Rel): Rel =
new Rel { def exec(call: Exec)(k: Cont) =
call(() => a) { () => call(() => b)(k) }}

def infix_||(a: => Rel, b: => Rel): Rel =
new Rel { def exec(call: Exec)(k: Cont) = {
call(() => a)(k); call(() => b)(k) }}

// logic terms
case class Exp[T](id: Int)
var varCount: Int = 0
def freshId = { var id = varCount;
varCount += 1; id }

def fresh[T] = Exp(freshId)

def exists[T](f: Exp[T] => Rel): Rel =
f(fresh)

def infix_===[T](a: => Exp[T],
b: => Exp[T]): Rel = {

register(IsEqual(a,b)); Yes }
def term[T](key: String, args:

List[Exp[Any]]): Exp[T] = {
val e = fresh[T]
register(IsTerm(e.id, key, args))
e }

// constraints
abstract class Constraint
case class IsTerm(id: Int, key: String,

args: List[Exp[Any]])
extends Constraint

case class IsEqual(x: Exp[Any], y: Exp[Any])
extends Constraint

var cstore: immutable.Set[Constraint] =
immutable.Set.empty

def conflict(cs: Set[Constraint],
c: Constraint): Boolean = ...

def register(c: Constraint): Unit = {
if (cstore.contains(c)) return
if (conflict(cstore,c)) throw Backtrack }

// execution (depth-first)
def run[T](f: Exp[T] => Rel): Seq[String] = {
def call(e: => Rel)(k: Cont): Unit = {
// save state
val cstore1 = cstore; val dvars1 = dvars
try { e.exec(call)(k)
} catch { case Backtrack => // OK
} finally { // restore state
cstore = cstore1; dvars = dvars1 }}

val q = fresh[T]
val res = new mutable.ListBuffer[String]()
call(() => f(q)) { () =>
res += extractStr(q) }

res.toList }
def runN[T](max: Int)(f: Exp[T] => Rel):

Seq[String] = ...

Fig. 1. Scalogno engine implementation

exec method, given an executor engine call for solving subgoals and a success
continuation k for returning satisfied. Failure is achieved through throwing a
Backtrack exception, to backtrack.

Before showing the engine, it’s helpful to see a few primitives and means of
combination for relations. Unconditional success, Yes, immediately successfully
continues. Unconditional failure, No, immediately throws. The conjunction of two
goals, &&, executes the first, and successfully continues with the second. The dis-
junction of two goals, ||, executes the first, and thereafter through backtracking
as defined by the delimited subcall, the second. These goal combinators make
use of call-by-name parameters (denoted by an => after the : and before the
parameter type in Scala).

Lightweight Functional Logic Meta-Programming 7

Finally, our DFS engine, in call, pushes the current state on to the stack,
runs the goal delegating execution to the underlying relation, catches failures
and restores the state upon recursive exits.

This engine cannot do much, because we do not have any constraints to solve
yet. So let us introduce a domain of terms, and equality constraints between
terms.

A term is uniquely identified. A term constraint IsTerm(id,key,args) identifies
a term id as being bound to a value key(args). An unbound term corresponds
to a free logic variable. An equality constraint IsEqual(x,y) is introduced by
unification, enforcing that two terms, x and y, have the same structure, that is
the same keys and, recursively, arguments.

We define new relations using our constraints. The form exists takes a
query—a goal with a hole—and fills the hole with a fresh variable. The form
=== unifies two terms by registering an equality constraint with the solver. The
form term introduces a new term also through constraint registration.

This style of “sea of nodes” construction by side effects is reminiscent of multi-
stage programming frameworks like LMS [30]; we will have more to say about
this in Section 3.4.

We package the core engine in a runnable interface, which takes a pseudo-
goal rather than a thunk, but parameterized by a free logic variable, which is
the query variable. The interface runN caps the number of returned answers to
a given maximum, while run is intended to return all answers. (We could also
have used a streaming interface.)

We simplistically reify answers into strings. Using polytypic typing as dis-
cussed in Section 2, we could improve the model to reify depending on the type
of the query variable.

For conflict detection, we keep track of the transitive closure of the set of con-
straints registered. One can implement a number of performance improvements,
including index structures that enable more efficient lookup and matching of
constraints.

If we abstract a solver interface, in particular, how state is pushed and re-
stored in the engine, it becomes easy to interface with external SMT solvers.

We are now ready to run some queries.

def e(x: Any) = term(x.toString, Nil)
run[Any]{q => q === e(1) || q === e(2)}
→˓ List(1,2)

As a summary, going back to the basics, what is the essence of a logic pro-
gramming system? The two main components are 1) search, i.e., nondeterminis-
tic execution, and 2) unification and constraints. We implement nondeterministic
execution using continuation-passing style (CPS). The class Rel comes with im-
plementations for disjunctions and conjunctions, but can be extended for other
execution patterns. Method run uses an auxiliary call to execute individual re-
lations, and the exec method of a Rel object can invoke its parameter call to
invoke other relations. The Depth-First Search (DFS) implementation of call

passes itself to Rel.exec. A Breadth-First Search (BFS) implementation would

8 Amin, Byrd, Rompf

pass a different method that would just collect the calls in a list. This BFS en-
gine just needs to override the run method but can share all other code with the
DFS implementation.

The handling of constraints and unification is only sketched in Figure 1. It
is a conscious design choice to keep constraints and execution separate as far as
possible. The benefit is that both aspects can be extended independently. We
model the constraint store cstore as a dynamic variable, which keeps its value in
a particular execution path (see Section 3.2 below). Invoking the infix method
=== on a logic term registers and checks a new constraint on its arguments in the
constraint store of the current execution path.

3.2 An Alternative to Reification and Interpretation

Among the usual use cases for meta-interpreters we find tracing, proof trees and
similar extensions. What they all have in common is that they augment a vanilla
interpreter to thread a piece of state through the execution.

Let us consider how we can implement such functionality without an explicit
meta-interpreter, taking tracing as example. Instead of threading state, we can
just use mutable state directly. However there is a catch: we cannot directly
use a mutable variable in Scala, because we need to keep apart the state from
different nondeterministic branches.

In Scalogno, we provide an abstraction for this: mutable variables with dy-
namic extent (DVar). In contrast to meta-interpreters, these variables can exist
side by side, so we can have multiple independent extensions at the same time.
Intuitively, dynamic variables have the same extent as the substitution map in
miniKanren [6] and the constraint store in cKanren [1], and they correspond to
certain realizations of mutable state in Or-parallel logic programming [16].

3.3 Tracing with Dynamic Variables

In the simplest case, we can directly modify the relation we are interested in
monitoring:

val globalTrace = DVar(nil: Exp[List[List[String]]])
def path(x: Exp[T], y: Exp[T]): Rel = {
globalTrace := cons(term("path",List(x,y)), globalTrace())
edge(x,y) || exists[T] { z => edge(x,z) && path(y,b) }}

But of course this approach is not very modular. Instead, we can introduce a
generic abstract operator for named rules:

def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) => Rel

Now, we modify the path relation to explictly use this rule abstraction to
indicate that we are indeed defining a named relation, as opposed to just a
meta-language abstraction:

def path: (Exp[T],Exp[T])=> Rel = rule("path") { (x,y) =>
edge(x,y) || exists[T] { z => edge(y,z) && path(z,y) }}

Lightweight Functional Logic Meta-Programming 9

Instead of modifying the relation directly, we can also build a subclass of
Graph:

trait TracingGraph[T] extends Graph[T] {
override def path(x:Exp[T],y:Exp[T]) = rule("path")(super.path)(x,y) }

In order to implement the actual tracing logic, we define an implementation
of the abstract interface as a trait which defines the rule method as follows. In
Scala, we can mix in this behavior with the otherwise default implementation of
the logic engine. We keep the global trace in a variable with dynamic extent.

val globalTrace = DVar(nil: Exp[List[List[String]]])
def rule[T,U](s: String)(f: (Exp[T],Exp[U]) => Rel): (Exp[T],Exp[U]) =>

Rel = { (a,b) =>
globalTrace := cons(term(s,List(a,b)), globalTrace())
f(a,b) }

We get the same result we would expect:

runN[(String,List[String])](5) {
case Pair(q1,q2) => g.path("a",q1) && globalTrace() === q2 }

→˓ pair(b,cons(path(a,b),nil));
pair(c,cons(path(b,c),cons(path(a,c),nil))); ...

We have identified a general design pattern: many meta-interpreters just
thread a piece of state. By adding support for this pattern to our engine, we
have achieved an alternative implementation approach that removes the need
for an entire class of explicit interpreters.

3.4 Clause Reification as Controlled Side Effect

While we have seen that we can often achieve the desired meta-programming
effects without explicit meta-interpreters, we may still want explicit interpreters
in certain cases. With this goal in mind, we demonstrate another use of dynamic
scope: turning logic programs into program generators.

Since we do not want to interpret the meta-language, we need to leverage
regular program execution. What can we do? We augment what the program
does when run. In an impure language we would use side effects, in a judicious
and very controlled way [31]: a reflect operation would emit code as side-effect,
and a reify operation would accumulate code that was produced in its scope.
This multi-stage evaluation mechanism is used in program generation frame-
works such as LMS [30]. A simple example would be the following:

def const(x: Int) = x.toString
def plus(x: String, y: String) = reflect(s"$x + $y")
def times(x: String, y: String) = reflect(s"$x * $y")
reify { plus(times(const(2), const(3)), times(const(4), const(5))) }

→˓

10 Amin, Byrd, Rompf

"val x1 = 2 * 3
val x2 = 4 * 5
val x3 = x1 + x2
x3"

Each individual reflected expression generates a val binding, captured by the
nearest enclosing reify. The underlying implementation of reify and reflect can
be as simple as this:

var code: Code
def reify(f: => String) = {
val temp = code; code = ""
val res = f
try (code + res) finally code = temp }

def reflect(rhs: String) = {
val id = fresh
code += s"val $id = $rhs\n"
id }

Note how reify sets and resets code based on the dynamic scope.
How can we adapt this idea to our logic settings? In the place of strings we

use a list of goals to accumulate generated terms, based on a dynamic variable
to manage scope. The implementation to reflect and reify goals is as follows:

val moregoals = DVar(fresh[List[Goal]])
def reifyGoals(goal: => Rel)(goals: Exp[List[Goal]]): Rel = {
moregoals := goals
goal && moregoals() === nil }

def reflectGoal(goal: Exp[Goal]): Rel = {
val hole = moregoals()
moregoals := fresh
hole === cons(goal,moregoals()) }

reifyGoals(reflectGoal("path(a,b)") →˓ "cons(path(a,b),nil)"

We maintain a global list of clauses, and we can reify clauses given a goal:

var allclauses = Map[String,Clause]()
def reifyClause(goal: => Rel)(head: Exp[Goal], body: Exp[List[Goal]]):
Rel = reifyGoals(goal)(cons(head,nil)) &&

allclauses(extractKey(head))(head,body)
run[List[Any]] { q =>
exists[Goal,List[Goal]] { (head,body) =>
q === cons("to prove", cons(head, cons("prove", cons(body, nil)))) &&
reifyClause(path(fresh,fresh))(head,body) }}

→˓
cons(to prove,cons(path(a,b),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(b,c),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(c,a),cons(prove,cons(nil,nil)))),
cons(to prove,cons(path(a,x0),cons(prove,cons(cons(path(b,x0),nil),nil)))),
cons(to prove,cons(path(b,x0),cons(prove,cons(cons(path(c,x0),nil),nil)))),
cons(to prove,cons(path(c,x0),cons(prove,cons(cons(path(a,x0),nil),nil))))

Lightweight Functional Logic Meta-Programming 11

We use the same rule abstraction as in the previous section to denote named
rules. It adds the clause definition to the global table and reflects the goal as a
side effect.

def rule[A,B](s: String)(f:(Exp[A], Exp[B]) => Rel) = {
def goalTerm(a: Exp[A], b: Exp[B]) = term[Goal](s,List(a,b))
allclauses += s -> { (head: Exp[Goal], body: Exp[List[Goal]]) =>
exists[A,B] { (a,b) =>
(head === goalTerm(a,b)) && reifyGoals(f(a,b))(body) }}

(a: Exp[A], b: Exp[B]) => reflectGoal(goalTerm(a,b))}

Finally, we adapt a vanilla interpreter to this new model. This interpreter
matches the head of the goal against the global clause table, turned into a
disjunction.

def allclausesRel: Clause = { (head: Exp[Goal], body: Exp[List[Goal]]) =>
allclauses.values.foldLeft(No:Rel)((r,c) => r || c(head,body)) }

def vanilla(goal: => Rel): Rel =
exists[List[Goal]] { goals => reifyGoals(goal)(goals) && vanilla(goals) }

def vanilla(goals: Exp[List[Goal]]): Rel =
goals === nil || exists[Goal,List[Goal],List[Goal]] { (g, gs, body) =>
(goals === cons(g,gs)) && allclausesRel(g,body) && vanilla(body) &&

vanilla(gs) }

In the same way, we can implement any other meta-interpreter, such as a tracing
interpreter.

4 Tabling as an Alternative Execution Strategy

In this section we show how to implement an alternative evaluation strategy. In
functional languages, memoization is a well-known way to speed up computations
by reusing intermediate results. The logic programming analogue is known as
tabling.

We will implement a memo combinator below that can be used as follows to
designate particular relations to be tabled:

def fib(x:Exp[Int], y:Exp[Int]): Rel = memo(term("fib",List(x,y))) {
(x === 0) && (y === 1) || (x === 1) && (y === 1) || {
val x1,x2,y1,y2 = fresh[Int]
(x === succ(x1)) && (x === (succ(succ(x2)))) &&
fib(x1,y1) && fib(x2,y2) && add(y1,y2,y) }}

The tabled version of fib will only compute a linear number of recursive calls
instead of an exponential number.

4.1 Implementation: Meta-Programming via the Host Language

Tabling is one of the cases that can not be implemented by a purely declarative
meta-interpreter. Instead, imperative features have to be used. Common Prolog
implementations are quite intricate, although the concept is simple. The core is

12 Amin, Byrd, Rompf

described nicely by Warren [37], which we take as blueprint for our implemen-
tation, shown in Figure 2. The evaluation of a logic program forms a search tree
for solutions. We can think of exploring this tree either as a nondeterministic
process, or as a set of concurrent deterministic processes. In this latter view,
multiple processes are active at the same time. When one process reaches a
choice point it forks into two new ones, and when it reaches a failure condition,
it terminates.

To add tabling or memoization, the first step is to add a global table callTable
that keeps track of every call to a memoized rule and all the answers returned
for it. In contrast to standard functional memoization, though, there may be any
number of answers for each call. An answer in this context consists of additional
constraints that will be applied to the goal as a side effect of executing the rule
(details elided in Figure 2). For example, the answer to the goal fib(5,x0) will
be fib(5,8) or equivalently the effect of applying constraint x0=8 to the goal.

When a process is about to call a memoized rule, it checks the global call table
to see if the call has already been made. If not, it adds its continuation to the table
and continues evaluating the rule body. When the process is about to return from
the call—and this may happen multiple times if the process is forked—then it
records the answer it has just computed and resumes all continuations registered
for this call with this new answer. If the answer is already in the table, then it
is a duplicate, and the process terminates.

When a process calls a memoized rule and the call is already in the table,
then the current continuation is invoked once for each recorded answer. The con-
tinuation is also registered in the table, since we cannot know if computation of
answers has already finished. More answers may become available in the future,
and will trigger this continuation again.

4.2 Memoization with Symbolic State Transitions

A key question is how our tabling combinator interacts with state. As a first
approximation, we make the input and output state of each call explicit by
collecting the values of all dynamic variables. We thus represent a call such
as path(a,b) as goal(path(a,b),state0(x0..),state1(x1..)), where x0.. are the
dynamic variables before the call, and x1.. the dynamic variables after the call.
In other words, we make the state transformation explicit.

However, straightforwardly memoizing these augmented goals would not lead
to the desired result. State is often used to accumulate extra contextual infor-
mation, so it changes all the time. It is rare that a rule is called twice in exactly
the same state and we would like to be sure that adding a piece of state to the
program should not change the memoization behavior.

For this reason, we memoize not based on the augmented goals but on the
call patterns only, ignoring input and output state. But how can we describe
a rule’s state modification independent of a particular input state? To achieve
this, we evaluate rule bodies with a fresh input state to obtain a symbolic rep-
resentation of the rule’s state modification. Implementation-wise, this is easy to
achieve because we already maintain a global table of dynamic variables (dvars

Lightweight Functional Logic Meta-Programming 13

// call table data structures and management
type Answer = (Exp[Any] => Unit)
case class Call(key: String, ...) { ... }
def makeCall(goal: Exp[Any], k: Cont): Call = ...
def makeAnswer(goal: Exp[Any]): Answer = ...
val callTable = new mutable.HashMap[String, mutable.HashMap[String,

Answer]]
val contTable = new mutable.HashMap[String, List[Call]]
// tabling combinator
def memo[A,B](goal: Exp[Any])(a: => Rel): Rel = new Rel {
override def exec(call: Exec)(k: Cont): Unit = {
def resume(cont: Call, ans: Answer) = ...
val cont = makeCall(goal, k)
callTable.get(cont.key) match {
case Some(answers) => // call key found:
for (ans <- answers.values) // continue with stored answers
resume(cont, ans)

case None => // call key not found:
val answers = new mutable.HashMap[String, Answer]
callTable(cont.key) = answers // add call table entry
call { () =>
cont.updateStateBeforeCall()
a // execute

} { () =>
cont.equateStateAfterCall()
val ansKey = extractStr(goal)
if (!answers.contains(ansKey)) {
val ans = cont.makeAnswer()
ansMap(ansKey) = ans // record new answer and
for (cont1 <- cont.table) // resume stored continuations
resume(cont1, ans)

}}}}}

Fig. 2. Tabling combinator implementation. Continuations and answers are memoized
in global tables.

in Figure 1). Before evaluating the body of a memoized rule, we replace all dvars
entries with fresh logic variables, which enables us to observe the effects on them
when an answer is produced. When resuming a continuation, the symbolic effects
need to be unified with the current valuations of the dynamic variables.

With this mechanism in place, we can generate the following answer term for
our example of tracing a path relation in a graph:

goal(path(a,b),state0(x0),state1(cons(path(a,b),x0))),
This term makes explicit that the state after the call—that is, the augmented
trace—is the state before the call x0, with the current head consed in front.

Using logic variables to abstract over the state before and after the call
ensures that we can represent any kind of relation between the two states that

14 Amin, Byrd, Rompf

can be modelled through matching terms. So dropping an element from the front
of a list would be easy (match on cons on the left-hand side), recursive predicates
such as removing from the middle of collection would be harder.

4.3 Example: Tabled Graph Evaluation

We first note that, as expected, tabling enables left as well as right recursive
relations:

def pathL(a: Exp[String], b: Exp[String]): Rel =
memo(term("path",List(a,b))) {

edge(a,b) || exists[String] { z => pathL(a,z) && edge(z,b) }

Furthermore, we can combine tabling with tracing:

val globalTrace = DVar(nil: Exp[List[List[String]]])
def pathLT(a: Exp[String], b: Exp[String]): Rel =

memo(term("path",List(a,b))) {
globalTrace := cons(term("path",List(a,b)), globalTrace())
edge(a,b) || exists[String] { z => pathLT(a,z) && edge(z,b) }}

And we can verify that the combination works as we would expect. Here is an
example query:

run[(String,List[String])] { case Pair(q1,q2) => pathLT("a",q1) &&
globalTrace() === q2 }

→˓
pair(b,cons(path(a,b),nil))
pair(c,cons(path(a,b),cons(path(a,c),nil)))
pair(a,cons(path(a,b),cons(path(a,c),cons(path(a,a),nil))))

As we can see, the mutable variable globalTrace behaves in the way we would
expect, recording paths ab, abc, and abca even though we have drastically changed
the evaluation order. Here is the execution trace:

goal(path(a,x0),state0(x1,nil),state1(x2,x3))
−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,b),state0(x0,x1),state1(x2,cons(path(a,b),x1)))

goal(path(a,x0),state0(x1,nil),state1(x2,x3))
−−→ goal(path(a,c),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,c),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),x1))))

goal(path(a,x0,state0(x1,nil),state1(x2,x3))
−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

Lightweight Functional Logic Meta-Programming 15

goal(path(a,x0),state0(x1,cons(path(a,x2),x3)),state1(x4,x5))
−−→ goal(path(a,a),state0(x0,x1),

state1(x2,cons(path(a,b),cons(path(a,c),cons(path(a,a),x1)))))

Note how state1 is expressed in terms of state0: the first component of
state0/state1 is ignored because dynamic var 0 is used internally—dynamic var
1 is the trace.

4.4 Application: Definite Clause Grammar (DCG)

A well-known application of tabling is to turn parsing in logic programming from
naive recursive descent strategies to more efficient strategies, variants of Earley’s
and chart parsing algorithms. As a case study, we consider an example of parsing
an arithmetic expression from prior work on tabling in Prolog [7]:

expr(S0, S) :- expr(S0, S1), S1 = [+| S2], term(S2, S).
expr(S0, S) :- term(S0, S).
term(S0, S) :- term(S0, S1), S1 = [*| S2], fact(S2, S).
term(S0, S) :- fact(S0, S).
fact(S0, S) :- S0 = ['(' | S1], expr(S1, S2), S2 = [')' | S].
fact(S0, S) :- S0 = [N | S], integer(N).

Notably, the grammar is left-recursive, so we cannot use it as a parser in regular
Prolog as the standard depth-first resolution strategy would go into an infinite
loop. However, in an implementation that supports tabling, the following works
and produces expected results:

? - expr ([3 , + , 4 , *] , []). →˓ no
? - expr ([3 , + , 4 , * , 7] , []). →˓ yes
? - expr (['(' , 3 , + , 4 , ')' , * , 7] , []). →˓ yes
? - E = [_ ,_ ,_ ,_ ,_ ,_ ,_ , _] , expr (E , []). →˓ no

The Prolog grammar above translates to Scalogno with tabling as follows:

def exp(s0: Exp[List[String]], s: Exp[List[String]]): Rel =
memo(term("exp", List(s0,s))) {

{ val s1,s2 = fresh[List[String]]
exp(s0,s1) && (s1 === cons("+",s2)) && trm(s2,s) } ||

trm(s0, s) }
def trm(s0: Exp[List[String]], s: Exp[List[String]]): Rel =

memo(term("trm", List(s0,s))) {
{ val s1,s2 = fresh[List[String]]
trm(s0,s1) && (s1 === cons("*",s2)) && fct(s2,s) } ||

fct(s0, s) }
def fct(s0: Exp[List[String]], s: Exp[List[String]]) = memo(term("fct",

List(s0,s))) {
{ val s1,s2 = fresh[List[String]]
s0 === cons("(", s1) && exp(s1, s2) && s2 === cons(")", s) } ||

{ val n = fresh[String]
s0 === cons(n, s) && dgt(n) }

16 Amin, Byrd, Rompf

}
def dgt(n: Exp[String]) = memo(term("dgt",List(n))) {
n === "0" || n === "1" || n === "2" || n === "3" || n === "4" ||
n === "5" || n === "6" || n === "7" || n === "8" || n === "9"

}

We obtain the same behavior as in Prolog: without tabling, search diverges, but
with the memo call in place, we automatically obtain an Earley-style bottom-up
parser from the given left-recursive grammar. The embedded setting of Scalogno
has the additional advantage that we can easily combine the parser with normal
deterministic Scala code that performs IO and/or tokenization:

run[List[String]] { q => exp(tokenize("(3+4)*7"), nil) } →˓ x0

The result is a single unbounded logic variable that indicates success, without
constraining q.

5 Related Work

There is a long tradition of meta-programming in Prolog, going back at least
to the early 1980s. Warren [36], O’Keefe [27], and Naish [26] discuss how to ex-
press higher-order “meta-predicates” inspired by functional programming, such
as map and fold; O’Keefe uses Prolog’s standard call operator, while Warren
and Naish advocate using an apply operator closer in spirit to Lisp. Warren
claims that 𝜆-terms are neither necessary nor desirable for higher-order pro-
gramming in Prolog, arguing that passing the names of top-level predicates to
meta-predicates is the best tradeoff between expressivity and keeping the Pro-
log language simple. Naish believes that apply is a more natural construct for
higher-order programming than Prolog’s traditional call operator, and claims
that reliance on call by the logic languages Mercury [32] and HiLog [8] make
higher-order programming in those languages awkward. Our host language Scala
supports 𝜆-terms and apply—we therefore inherit both the expressivity and the
complexity of these language features.

According to Martens [23], interest in Prolog meta-interpreters was spurred
by two articles [3, 15] from a 1982 collection edited by Clark and Tärnlund. In-
troductory books on Prolog [34, 27] further popularized meta-interpreters, which
are now considered a standard approach to Prolog meta-programming. Hill and
Lloyd claim that meta-interpreters in Prolog are fatally flawed, since they often
use non-declarative features, and since it can be difficult to assign a semantics
to untyped, unground logic programs; their strongly statically typed functional-
logic-constraint language Gödel [19] (and Lloyd’s followup language, Escher [22])
is specifically designed for declarative meta-programming. Martens [23] defends
Prolog-style meta-interpreters, arguing that all forms of untyped logic program-
ming have the same issues that Hill and Lloyd point out, but that reasonable
semantics can be applied to meta-programming in untyped logic languages. Our
perspective is that untyped meta-interpreters are clearly useful, as demonstrated
by their long history in Prolog; however, when embedding a system similar to

Lightweight Functional Logic Meta-Programming 17

Scalogno in a host language with an expressive static type system (such as Scala,
with its type classes), the type system can be put to good use for writing meta-
interpreters or achieving similar effects through other means, such as typed vari-
ables with dynamic scope. In the spirit of exploiting types but in an orthogonal
fashion, OCanren [21] implements an embedding similar to miniKanren while
exploiting the type system of OCaml to ensure a well-typed unification from the
perspective of the end user.

There is also a long history of trying to combine functional programming
and logic programming, once again going back to the early 1980s. There have
been many attempts to embed a Prolog-like language in Lisp [29, 18, 12], and
more recently, in Haskell [20, 33, 9]; to our knowledge, there is no work in the
literature on how to best write meta-interpreters for these embedded languages.

6 Conclusion

In this paper, we explored various techniques to meta-program logic programs
embedded in a functional host: deep linguistic re-use, reification (of program,
and dually, of context), dynamically scoped variables (capturing the common
pattern of recording extra information about each run), among others. Like in
the Prolog tradition of meta-interpreters, these techniques enable transforming
the evaluation of a logic program without complicating its description. In the
embedded setting, we have the choice of meta-programming within the embedded
language, or stepping out to the host language. By embracing this flexibility, we
gain simplicity: the embedded logic language remains “pure” and first-order,
tailored for relational programming.

Acknowledgments Research reported in this publication was supported in
part by the National Center For Advancing Translational Sciences of the Na-
tional Institutes of Health under Award Number OT2TR002517, by DARPA un-
der agreement number AFRLFA8750-15-2-0092, by NSF under Awards 1553471,
1564207, 1918483, by the Department of Energy under Award DE-SC0018050,
as well as by gifts from Google, Facebook, and VMware. The views expressed
are those of the authors and do not reflect the official policy or position of the
National Institutes of Health, Department of Defense, Department of Energy,
National Science Foundation, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

References

1. Alvis, C.E., Willcock, J.J., Carter, K.M., Byrd, W.E., Friedman, D.P.: cKanren:
miniKanren with constraints. In: Scheme (2011)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV. LNCS, vol. 6806, pp. 171–177 (2011)

18 Amin, Byrd, Rompf

3. Bowen, K.A., Kowalski, R.A.: Amalgamating logic and metalanguage in logic pro-
gramming. In: Clark, K.L., Tärnlund, S.A. (eds.) Logic Programming, pp. 153–172.
Academic Press (1982)

4. Byrd, W.E.: Relational Programming in miniKanren: Techniques, Applications,
and Implementations. Ph.D. thesis, Indiana University (September 2009)

5. Byrd, W.E., Ballantyne, M., Rosenblatt, G., Might, M.: A unified approach to
solving seven programming problems (functional pearl). PACML 1(ICFP) (2017)

6. Byrd, W.E., Holk, E., Friedman, D.P.: miniKanren, live and untagged: Quine gen-
eration via relational interpreters (programming pearl). In: Scheme (2012)

7. Carro, M., de Guzmàn, P.C.: Tabled logic programming and its applications. http:
//cliplab.org/~mcarro/Slides/Misc/intro_to_tabling.pdf (2011)

8. Chen, W., Kifer, M., Warren, D.S.: HiLog: A foundation for higher-order logic
programming. J. Log. Program. 15(3), 187–230 (1993)

9. Claessen, K., Ljunglöf, P.: Typed logical variables in Haskell. Electr. Notes Theor.
Comput. Sci. 41(1), 37 (2000), Haskell Workshop

10. Codish, M., Søndergaard, H.: Meta-circular abstract interpretation in Prolog. In:
The Essence of Computation. pp. 109–134 (2002)

11. Desouter, B., Van Dooren, M., Schrijvers, T.: Tabling as a library with delimited
control. Theory and Practice of Logic Programming 15(4-5), 419–433 (2015)

12. Felleisen, M.: Transliterating Prolog into Scheme. Tech. Rep. 182, Indiana Univer-
sity Computer Science Department (1985)

13. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge, MA (2005)

14. Friedman, D.P., Byrd, W.E., Kiselyov, O., Hemann, J.: The Reasoned Schemer.
MIT Press, Cambridge, MA, second edn. (2018)

15. Gallaire, H., Lasserre, C.: Metalevel control of logic programs. In: Clark, K.L.,
Tärnlund, S.A. (eds.) Logic Programming, pp. 173–185. Academic Press (1982)

16. Gupta, G., Costa, V.S.: Cuts and side-effects in and-or parallel Prolog. The Journal
of logic programming 27(1), 45–71 (1996)

17. Hanus, M.: Functional logic programming: From theory to Curry. In: Programming
Logics - Essays in Memory of Harald Ganzinger. pp. 123–168. LNCS 7797 (2013)

18. Haynes, C.T.: Logic continuations. J. Log. Program. 4(2), 157–176 (1987)
19. Hill, P.M., Lloyd, J.W.: The Gödel programming language. MIT Press (1994)
20. Hinze, R.: Prological features in a functional setting axioms and implementations.

In: FLOPS (1998)
21. Kosarev, D., Boulytchev, D.: Typed embedding of relational language in OCaml.

In: 2016 ML Family Workshop (Sep 2016)
22. Lloyd, J.W.: Declarative programming in Escher. Tech. Rep. CSTR-95-013, De-

partment of Computer Science, University of Bristol (June 1995)
23. Martens, B., Schreye, D.D.: Why untyped nonground metaprogramming is not

(much of) a problem. Journal of Logic Programming 22(1), 47–99 (Jan 1995)
24. Martin-Martin, E.: Type classes in functional logic programming. PEPM (2011)
25. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. vol. 4963,

pp. 337–340 (2008)
26. Naish, L.: Higher-order logic programming in Prolog. Tech. Rep. 96/2, University

of Melbourne (1996)
27. O’Keefe, R.A.: The Craft of Prolog. MIT Press, Cambridge, MA, USA (1990)
28. Oliveira, B.C., Moors, A., Odersky, M.: Type classes as objects and implicits. In:

OOPSLA (2010)

Lightweight Functional Logic Meta-Programming 19

29. Robinson, J.A., Sibert, E.E.: LOGLISP: an alternative to PROLOG. In: Hayes, J.,
Michie, D., Pao, Y.H. (eds.) Machine Intelligence 10, pp. 399–419. Ellis Horwood
Ltd. (1982)

30. Rompf, T.: The essence of multi-stage evaluation in LMS. In: A List of Successes
That Can Change the World. LNCS, vol. 9600, pp. 318–335 (2016)

31. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-virtualized: lin-
guistic reuse for deep embeddings. Higher-Order and Symbolic Computation 25(1)
(2013)

32. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declar-
ative logic programming language. In: Proceedings of the Australian Computer
Science Conference. pp. 499–512 (1995)

33. Spivey, J.M., Seres, S.: Embedding Prolog in Haskell. In: Meijer, E. (ed.) Proc.
of the 1999 Haskell Workshop. Technical Report UU-CS-1999-28, Department of
Computer Science, University of Utrecht (1999)

34. Sterling, L., Shapiro, E.: The Art of Prolog (2nd Ed.): Advanced Programming
Techniques. MIT Press, Cambridge, MA, USA (1994)

35. Sterling, L., Yalcinalp, L.U.: Explaining Prolog based expert systems using a lay-
ered meta-interpreter. pp. 66–71. IJCAI’89 (1989)

36. Warren, D.H.D.: Higher-order extensions to Prolog: are they needed? In: Hayes, J.,
Michie, D., Pao, Y.H. (eds.) Machine Intelligence 10, pp. 441–454. Ellis Horwood
Ltd. (1982)

37. Warren, D.S.: Memoing for logic programs. Commun. ACM 35(3), 93–111 (Mar
1992)

