
67

Versatile Event Correlation with Algebraic Effects

OLIVER BRAČEVAC, TU Darmstadt, Germany
NADA AMIN, University of Cambridge, UK
GUIDO SALVANESCHI, TU Darmstadt, Germany
SEBASTIAN ERDWEG, Delft University of Technology, The Netherlands
PATRICKEUGSTER,University of Lugano, Switzerland;TU Darmstadt, Germany;Purdue University, USA
MIRA MEZINI, TU Darmstadt, Germany

We present the first language design to uniformly express variants of n-way joins over asynchronous event
streams from different domains, e.g., stream-relational algebra, event processing, reactive and concurrent
programming. We model asynchronous reactive programs and joins in direct style, on top of algebraic
effects and handlers. Effect handlers act as modular interpreters of event notifications, enabling fine-grained
control abstractions and customizable event matching. Join variants can be considered as cartesian product
computations with “degenerate” control flow, such that unnecessary tuples are not materialized a priori. Based
on this computational interpretation, we decompose joins into a generic, naïve enumeration procedure of
the cartesian product, plus variant-specific extensions, represented in terms of user-supplied effect handlers.
Our microbenchmarks validate that this extensible design avoids needless materialization. Alongside a formal
semantics for joining and prototypes in Koka and multicore OCaml, we contribute a systematic comparison of
the covered domains and features.

CCS Concepts: • Software and its engineering→Control structures; Patterns;Coroutines; Semantics;

Additional Key Words and Phrases: event correlation, complex event processing, joins, asynchrony, algebraic
effect handlers, Koka, multicore OCaml

ACM Reference Format:

Oliver Bračevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, and Mira Mezini. 2018. Ver-
satile Event Correlation with Algebraic Effects. Proc. ACM Program. Lang. 2, ICFP, Article 67 (September 2018),
31 pages. https://doi.org/10.1145/3236762

1 INTRODUCTION

Events notify a software system of incidents in its dynamic environment. Examples of event sources
are sensors, input devices, or network hosts. Event correlation means to make deductions about
the state of the environment, given observations of events from different sources over time. For
example, by correlating batches or streams of events, computer systems drive cars, trade stocks, or
give recommendations; by correlating input events smartphones and tablet devices interpret touch
gestures. In the words of Luckham [2001]: “Events are related in various ways, by cause, by timing,
and by membership”. Since events are asynchronous, computing such event relations amounts to
defining n-way synchronizers (or joins) over events. To avoid teasing out subtle distinctions, we use
the terms join and correlation interchangeably.

Different communities have thus far invented various specialized abstractions for joins. On the
systems side, there are complex event processing (CEP) and stream processing systems [Cugola and
Margara 2012]. On the programming languages side, there are reactive programming [Bainomugisha

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART67
https://doi.org/10.1145/3236762

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

https://doi.org/10.1145/3236762
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3236762

67:2 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

et al. 2013] and concurrent programming languages, e.g., [Benton et al. 2004; Conchon and Le Fessant
1999; Fluet et al. 2008; Fournet and Gonthier 1996; Reppy 1991]. Common to all families is that they
support some sort of high-level specifications of joins, e.g., as declarative patterns or queries.

However, a commonly agreed-upon semantics for joins (and by extension event correlation)
remains elusive. Not only is the number of features for relating events staggering (cf. the surveys
by Bainomugisha et al. [2013]; Cugola and Margara [2012]), but already a single feature can be
interpreted quite differently between systems and even within one family (e.g., time windows [Din-
dar et al. 2013]). This lack of clarity is an obstacle for choosing the right language/system: It is hard
to determine its adequacy for expressing a desired event correlation behavior. Moreover, since each
system provides specialized abstractions that cannot be easily changed, some applications may not
find any adequate language/system to meet their requirements.

Motivated by these observations, the goal of our work is to contribute a language design and
structured programming abstractions for defining n-way event joins with customizable, extensible,
and composable semantics, which we call versatile joins. More specifically, we aim to enable:

• mix-and-match style compositions of features for relating events (from across domains),
customization in the sense that features can be reinterpreted (overloaded) to express
subtle differences, and extensibility with new features.

• controllable matching behavior: To model versatile joins, one needs to consider all pos-
sible ways joins can pattern match and process n infinite push streams. There are plenty
ways of doing this: Aligning, skipping, duplicating, timing, dependent on event values, or
any combination thereof. To manage this complexity, the language needs generic control
abstractions for coordination and alignment of streams.

• direct style specifications: Asynchrony of events encourages programming in some form
of continuation-passing style (CPS), due to inversion of control. This is error-prone and does
not scale in the large, leading to “callback-hell” [Edwards 2009]. Hence, the language design
should enable users to express asynchronous computations in direct style. This is easier to
understand and more natural than working with continuations directly. Even more so in the
case of n-way joins, where n interdependent continuations need to be coordinated.

This paper proposes Cartesius – a domain-specific language for programming versatile joins over
infinite event sequences that satisfies the above goals. Its design is guided by an informal intuition
of what a join is:

Proposition 1.1 (Intuitive Interpretation). A join (correlation) is a restriction of the cartesian
product over the inputs.

This view of joins is deliberately open-ended, since we aim for extensibility and customizability.
We consider the pure cartesian product as the most general correlation, confining the space of
possible results. Any other variant of event correlation is a restriction of the cartesian product, where
a “restriction” can take many forms, e.g., a simple attribute filter on values, or a nondeterministic
selection of values, which is an effect. We support user-defined effects as a way to specify, customize,
and add new restrictions.

Proposition 1.1 defines what joins “are” in a way that is not far from a denotational semantics,
e.g., relational algebra. At the same time, this informal view is already useful to derive a way of
doing joins, which is simple yet realistic for implementation in a programming language:

Proposition 1.2 (Computational Interpretation). A join computation is an enumeration of
the cartesian product over the inputs, with (user-defined) side effects influencing how the computation
proceeds.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:3

Following this computational interpretation, the core of Cartesius provides a generic cartesian
product implementation. Yet, despite working with such a naïve and expensive generic component,
effects enable us to obtain computationally efficient variants of correlations in Cartesius. That
is, the cartesian product retains all observed events forever and materializes all combinations of
events. In practice, though, only a small fraction of event combinations is relevant to the correlation
computation, e.g., when zipping streams. User-defined effects can manipulate the control flow so
that irrelevant event combinations are never materialized.

For language-level support of effects, Cartesius employs algebraic effects and handlers [Plotkin
and Power 2003; Plotkin and Pretnar 2009]. They adequately address our requirements on the
language design. First, algebras of effectful operations are well-suited for supporting extensibility
and customizability: They enable purely functional definitions of effects, compose freely, and enable
language extensions/customizations as libraries, without changes to compiler or runtime. Second,
effect handlers capture control flow akin to coroutines [de Moura and Ierusalimschy 2009], which
lets users express asynchronous computations in direct style [Leijen 2017a], diminishing the pains
of inversion of control and supporting custom control abstractions.

In the remainder of the paper, we make the following contributions:
• a high-level example-driven overview of Cartesius in Section 2;
• a formal semantics of a core calculus for effect handlers with parametric and effect polymorphism,
λcart, in Section 3;

• a library-based design of Cartesius, as an embedding into λcart. The design features novel uses
of algebraic effects and handlers: we encode event notifications, reactive programs, implicit
variables and control abstractions for fine-grained coordination of asynchronous computations.
We implemented the design in both Koka and multicore OCaml (Section 4).

• an evaluation of Cartesius’s expressivity, through a systematic comparison with works surveyed
across the CEP/streaming engines, reactive and concurrent programming languages in Section 5;

• a small-scale, preliminary study to quantify and gain insights on the effectiveness of the compu-
tational interpretation in Section 6;

• a discussion on experiences gained from implementing Cartesius in real algebraic effects
languages and potential future research directions in Section 7.

To the best of our knowledge, this is the first work to (a) enable programmable event correlation
with clearly defined semantics – a long standing problem for event languages – and (b) to identify
and adopt algebraic effects and handlers as a viable method for solving the problem.

2 AN OVERVIEW OF CARTESIUS

This section presents a high-level overview of Cartesius from the perspective of end users who
need to specify and customize joins. We assume a host language akin to ML with algebraic effects.
Furthermore, we outline how our computational interpretation of joins integrates event correlation
features from different domains.

2.1 Event Sources

There are two kinds of asynchronous event sources in Cartesius computations: Input event sources
that connect to the external world, e.g., sensors, input devices, etc., and output event sources that
are defined by correlation patterns. Both are called reactives.

Cartesius embodies reactives as values of the parametric data type R[T], where T is the type of
the payload carried by events. An event of typeT in Cartesius is actually a product type (T ×Time)

for some time representation Time. That is, an event embodies the evidence of something that
happened at a particular point in time. This is unlike works on reactive programming (e.g., [Cave

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:4 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

et al. 2014]), which view events of type T as the potential to yield a value in terms of an eventually
modality ♢[T]. These two views are not incompatible, though. In fact, both show up in the definition
of R[T], which corresponds to an infinite sequence of events in the first sense:

R[T] ≈ µX .♢[(T × Time) × X].

That is, an event source of Cartesius potentially yields events, one after another. We adopt this
representation from [Elliott 2009] and discuss its precise definition and benefits in Section 3.

Many CQL-like query languages [Arasu et al. 2004; Krämer and Seeger 2009] and CEP lan-
guages [Demers et al. 2006; Diao et al. 2007] also exhibit timing information on data streams and
events. The design space for representing time in these languages ranges from singular time stamps
to sets of time stamps per event, trading off accuracy and space requirements [White et al. 2007].
Cartesius employs intervals for constant space usage, while still enabling an approximation of an
event’s history.

2.2 Expressing Event Relations in Direct Style

In Cartesius, we express versatile event correlation through declarative correlation patterns, which
correlates events from one to many reactives, thereby transforming event data, or filtering events.
A basic example is the following pattern:

1 let mouse: R[Int×Int] = ... //mouse input
2 let even_mouse_product: R[Int] =
3 correlate
4 { p from mouse
5 where (fst p) mod 2 = 0
6 yield (fst p) ∗ (snd p) }

where the syntactic form correlate delimits the pattern body between the curly braces. This
correlation pattern defines a reactive even_mouse_product correlating mouse position events, which
are integer pairs. We filter the positions with an even first component using where and multiply
their components within yield. The overall result of the correlation is a reactive emitting all
multiplications of mouse positions satisfying the condition.

Note that this example is an asynchronous computation, but its syntax maintains the intuitive di-
rect style of comprehension syntax similar to stream query languages. That is, even_mouse_product
looks demand-driven (or pull-based), but it is reacting to event observations from the external
mouse input (push-based). Internally, inversion of control is present, but it remains hidden to
end-users.

In general, event correlations are expressed as n-way correlation patterns of the form:

correlate { x1 from r1;. . .;xn from rn where p yield e }

which intuitively represents a transformation1

R[T1] ⇒ . . .⇒ R[Tn] ⇒ R[Tn+1]

that forms an output reactive from n input reactives. The elements of the pattern syntax reflect
this accordingly: (1) we bind individual event variables from input reactives with xi from ri , in
the scope p and e , (2) intensionally specify relations among the events (xi)1≤i≤n in the optional
predicate where p, and then (3) apply a transformation yield e: T1 × . . . × Tn ⇒ Tn+1 to event
combinations that are in the relation.
1We write A ⇒ B to indicate transformations in a broad, informal sense, and A → B for proper function types.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:5

(a) cartesian (b) combineLatest (c) zip (d)affinely & combineLatest
Fig. 1. Example correlations over two reactives, represented by arrows. Colored marbles represent events.

Dashed lines indicate materialized pairings. The marble diagram notation is adopted from the Rx documenta-

tion.

2.3 Computational Interpretation

Here, we motivate the cartesian product with side effects view (Proposition 1.2). The most basic
correlation pattern we can define in Cartesius is an n-way cartesian product, i.e., the cartesian
definition in Figure 2, top left, which produces all combinations ⟨x,y⟩ from the left and right reactives
(Figure 1a). Predicates as in the preceding example reduce the number of generated combinations,
i.e., restrict the cartesian product. This is a simple and intuitive way to think about the semantics of
event correlation and close to a relational algebra interpretation.

We also want to derive the operational behavior of event correlation as a realistic basis for
concrete implementations in a programming language. The challenge is to keep the specification of
the operational behavior simple and extensible, ideally, close to the intuitive relational view while
achieving efficiency of the computation. A naïve implementation would generate all combinations
and then test against the predicate, which is expensive and leads to space leaks [Krishnaswami 2013;
Liu and Hudak 2007; Mitchell 2013]. Moreover, due to the asynchrony of reactives, we are forced
to observe event notifications one-by-one. Hence, applying lazy techniques from demand-driven
computation would not avoid the issue.

Our solution a priori avoids generating superfluous combinations. Specifically, we propose expos-
ing overloadable, user-defined effects in the cartesian product computation. Simply by reinterpreting
its effects, we force the computation into a specific operational behavior, so that the search space of
combinations is cut down. In this way, end users can work with a generic, naïve generate-then-test
implementation and turn it into a specialized, efficient computation.

For the concrete implementation of the operational behavior sketched above, Cartesius uses
an effect system based on Plotkin et. al’s algebraic effects and handlers [Plotkin and Power 2003;
Plotkin and Pretnar 2009]. Some elements of the correlation pattern syntax desugar into effect
operations. One such element is e.g., yield. By itself, yield has no semantics (i.e., implementation) –
it requires a run time context (a handler) in which it is interpreted. For now, it is not necessary
to understand this abstraction in detail. The only thing of note is that programmers can write
and apply effect handlers that give implementations to effect operations as a form of dynamic
overloading. Effect handlers are the main programming abstraction for customizing and specializing
joins. We explain the basics of effects and handlers in Section 3 and how they are used for event
correlation in Section 4.

2.4 Customizing Matching Behavior with Algebraic Effects

With the computational interpretation sketched above, modeling a specific correlation semantics
becomes a matter of adding the right mixture of effect handlers. This aspect of the language
design is crucial for defining extensions and mix-and-match style compositions of features. In the
following, we exemplify this by specifying different correlation behaviors in Cartesius using the
effect mechanism.

As a first example, we discuss the combineLatest combinator on asynchronous event sequences,
e.g., as featured in the Reactive Extensions (Rx) library [ReactiveX [n. d.]]. As illustrated in Figure 1b,
this combinator weakly aligns its inputs and always combines the most recently observed events.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:6 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

1 let cartesian: R[A] → R[B] → R[A × B] = λleft. λright.
2 correlate
3 { x from left; y from right
4 yield ⟨x,y⟩ }

1 let combineLatest = λleft.λright.
2 let implicit ?restriction = (mostRecently left)
3 ⊞ (mostRecently right)
4 in cartesian left right

1 let zip = λleft. λright.
2 let implicit ?restriction = (mostRecently left)
3 ⊞ (mostRecently right)
4 ⊞ (aligning left right)
5 in cartesian left right

1 let affine_latest = λleft. λright.
2 let implicit ?restriction = (affinely left)
3 ⊞ (mostRecently left)
4 ⊞ (mostRecently right)
5 in cartesian left right

Fig. 2. Corresponding Cartesius code for Figure 1.

correlate
interleave

m
em

ory

?restriction

yield e

⨂
where p

suspend/resume push1. . .pushn
<latexit sha1_base64="YGu23F/xR9qEjPyjhd1vJQPmqRo=">AAACJnicbVC7TgJBFJ3FF+Jr1dJmI5hQkV0atSPaWGLiCgkQMjtcYMLs7GbmrpFs+AX/w95Wf8HKGDtLP8MBthDwJJOcnHNP7twTxIJrdN0vK7e2vrG5ld8u7Ozu7R/Yh0f3OkoUA59FIlLNgGoQXIKPHAU0YwU0DAQ0gtH11G88gNI8knc4jqET0oHkfc4oGqlrl9sIjyaXxokeTkpdr9QWvQj1kixLXbvoVtwZnFXiZaRIMtS79k+7F7EkBIlMUK1bnhtjJ6UKORMwKbQTDTFlIzqAlqGShqA76eyiiXNmlJ7Tj5R5Ep2Z+jeR0lDrcRiYyZDiUC97U/E/r5Vg/6KTchknCJLNF/UT4WDkTOtxelwBQzE2hDLFzV8dNqSKMjQlLmwRPABzi4SJqcZbLmKV+NXKZcW7rRZrV1lHeXJCTkmZeOSc1MgNqROfMPJEXsgrebOerXfrw/qcj+asLHNMFmB9/wICLaeX</latexit><latexit sha1_base64="YGu23F/xR9qEjPyjhd1vJQPmqRo=">AAACJnicbVC7TgJBFJ3FF+Jr1dJmI5hQkV0atSPaWGLiCgkQMjtcYMLs7GbmrpFs+AX/w95Wf8HKGDtLP8MBthDwJJOcnHNP7twTxIJrdN0vK7e2vrG5ld8u7Ozu7R/Yh0f3OkoUA59FIlLNgGoQXIKPHAU0YwU0DAQ0gtH11G88gNI8knc4jqET0oHkfc4oGqlrl9sIjyaXxokeTkpdr9QWvQj1kixLXbvoVtwZnFXiZaRIMtS79k+7F7EkBIlMUK1bnhtjJ6UKORMwKbQTDTFlIzqAlqGShqA76eyiiXNmlJ7Tj5R5Ep2Z+jeR0lDrcRiYyZDiUC97U/E/r5Vg/6KTchknCJLNF/UT4WDkTOtxelwBQzE2hDLFzV8dNqSKMjQlLmwRPABzi4SJqcZbLmKV+NXKZcW7rRZrV1lHeXJCTkmZeOSc1MgNqROfMPJEXsgrebOerXfrw/qcj+asLHNMFmB9/wICLaeX</latexit><latexit sha1_base64="YGu23F/xR9qEjPyjhd1vJQPmqRo=">AAACJnicbVC7TgJBFJ3FF+Jr1dJmI5hQkV0atSPaWGLiCgkQMjtcYMLs7GbmrpFs+AX/w95Wf8HKGDtLP8MBthDwJJOcnHNP7twTxIJrdN0vK7e2vrG5ld8u7Ozu7R/Yh0f3OkoUA59FIlLNgGoQXIKPHAU0YwU0DAQ0gtH11G88gNI8knc4jqET0oHkfc4oGqlrl9sIjyaXxokeTkpdr9QWvQj1kixLXbvoVtwZnFXiZaRIMtS79k+7F7EkBIlMUK1bnhtjJ6UKORMwKbQTDTFlIzqAlqGShqA76eyiiXNmlJ7Tj5R5Ep2Z+jeR0lDrcRiYyZDiUC97U/E/r5Vg/6KTchknCJLNF/UT4WDkTOtxelwBQzE2hDLFzV8dNqSKMjQlLmwRPABzi4SJqcZbLmKV+NXKZcW7rRZrV1lHeXJCTkmZeOSc1MgNqROfMPJEXsgrebOerXfrw/qcj+asLHNMFmB9/wICLaeX</latexit><latexit sha1_base64="YGu23F/xR9qEjPyjhd1vJQPmqRo=">AAACJnicbVC7TgJBFJ3FF+Jr1dJmI5hQkV0atSPaWGLiCgkQMjtcYMLs7GbmrpFs+AX/w95Wf8HKGDtLP8MBthDwJJOcnHNP7twTxIJrdN0vK7e2vrG5ld8u7Ozu7R/Yh0f3OkoUA59FIlLNgGoQXIKPHAU0YwU0DAQ0gtH11G88gNI8knc4jqET0oHkfc4oGqlrl9sIjyaXxokeTkpdr9QWvQj1kixLXbvoVtwZnFXiZaRIMtS79k+7F7EkBIlMUK1bnhtjJ6UKORMwKbQTDTFlIzqAlqGShqA76eyiiXNmlJ7Tj5R5Ep2Z+jeR0lDrcRiYyZDiUC97U/E/r5Vg/6KTchknCJLNF/UT4WDkTOtxelwBQzE2hDLFzV8dNqSKMjQlLmwRPABzi4SJqcZbLmKV+NXKZcW7rRZrV1lHeXJCTkmZeOSc1MgNqROfMPJEXsgrebOerXfrw/qcj+asLHNMFmB9/wICLaeX</latexit>

?

…

…

r1<latexit sha1_base64="4J12QmTQ9FOhZlhJgxcADajA/qs=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla5b6ZbKTtWZwl4mbk7KJEejW/rp9GKWRiCRCap123US9DOqkDMB42In1ZBQNqR9aBsqaQTaz6ZXj+1To/TsMFbmSbSn6t9ERiOtR1FgJiOKA73oTcT/vHaK4YWfcZmkCJLNFoWpsDG2JxXYPa6AoRgZQpni5labDaiiDE1Rc1sED8D8RcLYVOMuFrFMvFr1sure1sr1q7yjAjkmJ+SMuOSc1MkNaRCPMKLIC3klb9az9W59WJ+z0RUrzxyROVhfv7aFm8c=</latexit><latexit sha1_base64="4J12QmTQ9FOhZlhJgxcADajA/qs=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla5b6ZbKTtWZwl4mbk7KJEejW/rp9GKWRiCRCap123US9DOqkDMB42In1ZBQNqR9aBsqaQTaz6ZXj+1To/TsMFbmSbSn6t9ERiOtR1FgJiOKA73oTcT/vHaK4YWfcZmkCJLNFoWpsDG2JxXYPa6AoRgZQpni5labDaiiDE1Rc1sED8D8RcLYVOMuFrFMvFr1sure1sr1q7yjAjkmJ+SMuOSc1MkNaRCPMKLIC3klb9az9W59WJ+z0RUrzxyROVhfv7aFm8c=</latexit><latexit sha1_base64="4J12QmTQ9FOhZlhJgxcADajA/qs=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla5b6ZbKTtWZwl4mbk7KJEejW/rp9GKWRiCRCap123US9DOqkDMB42In1ZBQNqR9aBsqaQTaz6ZXj+1To/TsMFbmSbSn6t9ERiOtR1FgJiOKA73oTcT/vHaK4YWfcZmkCJLNFoWpsDG2JxXYPa6AoRgZQpni5labDaiiDE1Rc1sED8D8RcLYVOMuFrFMvFr1sure1sr1q7yjAjkmJ+SMuOSc1MkNaRCPMKLIC3klb9az9W59WJ+z0RUrzxyROVhfv7aFm8c=</latexit><latexit sha1_base64="4J12QmTQ9FOhZlhJgxcADajA/qs=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla5b6ZbKTtWZwl4mbk7KJEejW/rp9GKWRiCRCap123US9DOqkDMB42In1ZBQNqR9aBsqaQTaz6ZXj+1To/TsMFbmSbSn6t9ERiOtR1FgJiOKA73oTcT/vHaK4YWfcZmkCJLNFoWpsDG2JxXYPa6AoRgZQpni5labDaiiDE1Rc1sED8D8RcLYVOMuFrFMvFr1sure1sr1q7yjAjkmJ+SMuOSc1MkNaRCPMKLIC3klb9az9W59WJ+z0RUrzxyROVhfv7aFm8c=</latexit>

rn<latexit sha1_base64="DiRtz0ome9dp75jovHbxuuc+auY=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla6sdEtlp+pMYS8TNydlkqPRLf10ejFLI5DIBNW67ToJ+hlVyJmAcbGTakgoG9I+tA2VNALtZ9Orx/apUXp2GCvzJNpT9W8io5HWoygwkxHFgV70JuJ/XjvF8MLPuExSBMlmi8JU2BjbkwrsHlfAUIwMoUxxc6vNBlRRhqaouS2CB2D+ImFsqnEXi1gmXq16WXVva+X6Vd5RgRyTE3JGXHJO6uSGNIhHGFHkhbySN+vZerc+rM/Z6IqVZ47IHKyvXxhGnAQ=</latexit><latexit sha1_base64="DiRtz0ome9dp75jovHbxuuc+auY=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla6sdEtlp+pMYS8TNydlkqPRLf10ejFLI5DIBNW67ToJ+hlVyJmAcbGTakgoG9I+tA2VNALtZ9Orx/apUXp2GCvzJNpT9W8io5HWoygwkxHFgV70JuJ/XjvF8MLPuExSBMlmi8JU2BjbkwrsHlfAUIwMoUxxc6vNBlRRhqaouS2CB2D+ImFsqnEXi1gmXq16WXVva+X6Vd5RgRyTE3JGXHJO6uSGNIhHGFHkhbySN+vZerc+rM/Z6IqVZ47IHKyvXxhGnAQ=</latexit><latexit sha1_base64="DiRtz0ome9dp75jovHbxuuc+auY=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla6sdEtlp+pMYS8TNydlkqPRLf10ejFLI5DIBNW67ToJ+hlVyJmAcbGTakgoG9I+tA2VNALtZ9Orx/apUXp2GCvzJNpT9W8io5HWoygwkxHFgV70JuJ/XjvF8MLPuExSBMlmi8JU2BjbkwrsHlfAUIwMoUxxc6vNBlRRhqaouS2CB2D+ImFsqnEXi1gmXq16WXVva+X6Vd5RgRyTE3JGXHJO6uSGNIhHGFHkhbySN+vZerc+rM/Z6IqVZ47IHKyvXxhGnAQ=</latexit><latexit sha1_base64="DiRtz0ome9dp75jovHbxuuc+auY=">AAACCnicbVDLTsJAFJ36RHyhLt00gokr0rJRd0Q3LjGxQgKVTIdbmDCdNjO3RtLwCe7d6i+4Mm79Cf/Az3CALgQ8ySQn59yTe+cEieAaHefbWlldW9/YLGwVt3d29/ZLB4f3Ok4VA4/FIlatgGoQXIKHHAW0EgU0CgQ0g+H1xG8+gtI8lnc4SsCPaF/ykDOKRnroIDyZVKbGla6sdEtlp+pMYS8TNydlkqPRLf10ejFLI5DIBNW67ToJ+hlVyJmAcbGTakgoG9I+tA2VNALtZ9Orx/apUXp2GCvzJNpT9W8io5HWoygwkxHFgV70JuJ/XjvF8MLPuExSBMlmi8JU2BjbkwrsHlfAUIwMoUxxc6vNBlRRhqaouS2CB2D+ImFsqnEXi1gmXq16WXVva+X6Vd5RgRyTE3JGXHJO6uSGNIhHGFHkhbySN+vZerc+rM/Z6IqVZ47IHKyvXxhGnAQ=</latexit>

rout<latexit sha1_base64="Xqr6iiDdsRwlmgEirAfs+/OmVBI=">AAACF3icbVBNT8JAEN36ifiFejJeGtHEE2m5qDeiF4+YWCGhhGyXATZst83u1Eiaxv/h3av+BU/Gq0f/gT/DBXoQ8CWbvH0zLzPzglhwjY7zbS0tr6yurRc2iptb2zu7pb39ex0lioHHIhGpZkA1CC7BQ44CmrECGgYCGsHwelxvPIDSPJJ3OIqhHdK+5D3OKBqpUzr0ER6NL1XZSccPKQ4MjxI0v1LZqTgT2IvEzUmZ5Kh3Sj9+N2JJCBKZoFq3XCfGdkoVciYgK/qJhpiyIe1Dy1BJQ9DtdHJCZp8apWv3ImWeRHui/nWkNNR6FAamc7yknq+Nxf9qrQR7F+2UyzhBkGw6qJcIGyN7nIfd5QoYipEhlCludrXZgCrK0KQ2M0XwAMwtEjITjTsfxCLxqpXLintbLdeu8owK5IgckzPiknNSIzekTjzCyBN5Ia/kzXq23q0P63PaumTlngMyA+vrFyGUoWg=</latexit><latexit sha1_base64="Xqr6iiDdsRwlmgEirAfs+/OmVBI=">AAACF3icbVBNT8JAEN36ifiFejJeGtHEE2m5qDeiF4+YWCGhhGyXATZst83u1Eiaxv/h3av+BU/Gq0f/gT/DBXoQ8CWbvH0zLzPzglhwjY7zbS0tr6yurRc2iptb2zu7pb39ex0lioHHIhGpZkA1CC7BQ44CmrECGgYCGsHwelxvPIDSPJJ3OIqhHdK+5D3OKBqpUzr0ER6NL1XZSccPKQ4MjxI0v1LZqTgT2IvEzUmZ5Kh3Sj9+N2JJCBKZoFq3XCfGdkoVciYgK/qJhpiyIe1Dy1BJQ9DtdHJCZp8apWv3ImWeRHui/nWkNNR6FAamc7yknq+Nxf9qrQR7F+2UyzhBkGw6qJcIGyN7nIfd5QoYipEhlCludrXZgCrK0KQ2M0XwAMwtEjITjTsfxCLxqpXLintbLdeu8owK5IgckzPiknNSIzekTjzCyBN5Ia/kzXq23q0P63PaumTlngMyA+vrFyGUoWg=</latexit><latexit sha1_base64="Xqr6iiDdsRwlmgEirAfs+/OmVBI=">AAACF3icbVBNT8JAEN36ifiFejJeGtHEE2m5qDeiF4+YWCGhhGyXATZst83u1Eiaxv/h3av+BU/Gq0f/gT/DBXoQ8CWbvH0zLzPzglhwjY7zbS0tr6yurRc2iptb2zu7pb39ex0lioHHIhGpZkA1CC7BQ44CmrECGgYCGsHwelxvPIDSPJJ3OIqhHdK+5D3OKBqpUzr0ER6NL1XZSccPKQ4MjxI0v1LZqTgT2IvEzUmZ5Kh3Sj9+N2JJCBKZoFq3XCfGdkoVciYgK/qJhpiyIe1Dy1BJQ9DtdHJCZp8apWv3ImWeRHui/nWkNNR6FAamc7yknq+Nxf9qrQR7F+2UyzhBkGw6qJcIGyN7nIfd5QoYipEhlCludrXZgCrK0KQ2M0XwAMwtEjITjTsfxCLxqpXLintbLdeu8owK5IgckzPiknNSIzekTjzCyBN5Ia/kzXq23q0P63PaumTlngMyA+vrFyGUoWg=</latexit><latexit sha1_base64="Xqr6iiDdsRwlmgEirAfs+/OmVBI=">AAACF3icbVBNT8JAEN36ifiFejJeGtHEE2m5qDeiF4+YWCGhhGyXATZst83u1Eiaxv/h3av+BU/Gq0f/gT/DBXoQ8CWbvH0zLzPzglhwjY7zbS0tr6yurRc2iptb2zu7pb39ex0lioHHIhGpZkA1CC7BQ44CmrECGgYCGsHwelxvPIDSPJJ3OIqhHdK+5D3OKBqpUzr0ER6NL1XZSccPKQ4MjxI0v1LZqTgT2IvEzUmZ5Kh3Sj9+N2JJCBKZoFq3XCfGdkoVciYgK/qJhpiyIe1Dy1BJQ9DtdHJCZp8apWv3ImWeRHui/nWkNNR6FAamc7yknq+Nxf9qrQR7F+2UyzhBkGw6qJcIGyN7nIfd5QoYipEhlCludrXZgCrK0KQ2M0XwAMwtEjITjTsfxCLxqpXLintbLdeu8owK5IgckzPiknNSIzekTjzCyBN5Ia/kzXq23q0P63PaumTlngMyA+vrFyGUoWg=</latexit>

await/pull

push/resolve

? Future event

Control/data flow

Read access
? ?

await/pull

Fig. 3. Overview: Computational elements of correlation patterns.

Figure 2, top right, shows its corresponding Cartesius definition. In Line 2-3, we apply the
combinator mostRecently to both left and right reactives. This combinator creates an effect handler
that acts on its argument reactive (left and right in the example). The ⊞ operator composes the
two effect handlers, so that both apply to the correlation. We may read this line as “inject this
(compound) effect handler into the cartesian product computation”. The handlers are injected
through an implicit variable ?restriction into the computation. We use implicit variables starting
with ‘?’ for injecting dependencies (Section 3.1.4).

Correlation patterns always depend on the implicit variable ?restriction, which by default is
bound such that there is no restriction. During the computation of a correlation pattern, the effect
injected by ?restriction is applied. In the case of combineLatest, the injected effects force the cartesian
product to provision only one element per input reactive, discarding events other than the latest
one.

Pattern translation. Above, we specified a custom correlation behavior as a restriction of the
cartesian product. To provide readers an overview of how this computation is structured underneath
the surface, Figure 3 depicts the computational building blocks into which Cartesius translates
n-way correlation patterns. Blocks designate computations, which interact by control or data
transfer, indicated by solid arrows. A correlate pattern results in a number of sub-computations,
which we describe top to bottom in the following.

The interleave sub-computation is a collection of n threads/strands, each independently iterating
over one of the n input reactives. The dashed lines indicate that accessing the events of a reactive
is potentially blocking. A reactive always has a finite prefix of materialized events and a tail that is
yet-to-arrive in the future (indicated by question mark). For materialized input events, iteration
proceeds in direct style, but suspends at the future tail with its continuation/callback, until the
environment asynchronously materializes the tail. The i-th interleaved thread exposes the events
to the join by performing a distinct pushi effect to the building blocks downwards.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:7

The user-supplied ?restriction computation handles (i.e., observes) these pushi effects. It embodies
a custom synchronization logic for aligning the reactives, in the role of a coordinator or “puppeteer”.
For this purpose, ?restriction has the power to suspend/resume individual strands. Another respon-
sibility of ?restriction is to interact with the fixed cartesian product computation (⊗) – control shifts
between the two as a form of coroutine [de Moura and Ierusalimschy 2009]. ?restriction and ⊗

use a shared memory as communication medium to control the event combinations that ⊗ will
generate. The default ?restriction (unrestricted cartesian product) will store all events it observes
from interleave in memory for further processing by ⊗. The mostRecently ?restriction introduced
above would only store the last observed event in memory and truncate older events. Once ⊗

generates event combinations, these pass into the filtering and transformation steps as specified by
where and yield. Finally, yielded output events are materialized into an output reactive.

Composing custom correlation behaviors. To illustrate how combinators can be composed, consider
the following correlation pattern that specifies the well-known zip combinator (Figure 1c). It exhibits
a stricter alignment than combineLatest by adding another effect handler (aligning left right) in
Figure 2, bottom left. The (aligning) handler changes the selection behavior of the cartesian product
so that events from left and right are processed in lockstep. That is, if the correlation computation
receives the next event from left, it will not process further left events until the next right event,
and vice versa. It does this by suspending/resuming the corresponding iteration strand (Figure 3).
In conjunction with mostRecently, we ensure that paired up events are forgotten. The result is the
familiar correlation behavior of zip. Supplied effect handlers execute in right-to-left order. For
example, the restrictions imposed by (aligning) apply first to ensure lockstep processing.

We can flexibly change the behavior of correlations with additional effect handlers. For instance,
event consumption is another aspect we may wish to control. By default, there is no bound on how
often a correlation may combine an observed event with another one. For example, in combineLatest,
if left emits just one event e , then e will forever be combined with all future events from right.
We may wish to enforce affine use of events to avoid this. It suffices to supply the affinely effect
handler, just as in the affine_latest combinator in Figure 2, bottom right. Its behavior is depicted
in Figure 1d, i.e., each event of the top stream occurs at most once in a pairing with the bottom
stream.

2.5 Natural Specifications with Implicit Time Data

Notice that variable bindings in correlation patterns directly project the payload of events. For
instance, the definition of even_mouse_product directly accesses the first component of p. As men-
tioned, the events actually carry additional time information: a closed occurrence time interval
[τ1, τ2]. Yet, so far, time does not show up neither in the correlation pattern definitions nor in the
types of the input reactives. This design choice enables programmers to write event relations and
transformations naturally in terms of the payload, as long as they do not need explicit access to
event times.

Cartesius provides access to event times through special variables. For each bound event
variable x , Cartesius provides an implicit variable ?timex that contains the time of x . The binding
of ?timex variables is managed internally by the join computation and exists only within the scope
of the corresponding correlate pattern. For example, the pattern
1 correlate
2 { p from mouse; k from keys
3 where |(end ?timep) − (end ?timek)| ≤ 2 ms
4 yield ⟨a,b⟩ }

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:8 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

correlates all mouse movements and keyboard events where the occurrence time intervals end at
most 2 milliseconds apart from each other (Line 3). The function end in the constraint refers to
the end of the respective interval. Dually, the function start refers to the beginning of the interval.
When an event results from a correlation pattern, its time interval is the union of the intervals of
the contributing events. With implicit variables, we avoid the notational overhead of wrapping and
unwrapping the payload and time from n input events to form an output event.

2.6 Time Windows as Contextual Abstractions

Since effect handlers influence control flow, core features from the CQL-like query languages [Arasu
et al. 2004; Krämer and Seeger 2009] and CEP engines [Demers et al. 2006; Diao et al. 2007] are
expressible. One such core feature are time windows. The following example is adapted from
EventJava [Eugster and Jayaram 2009] to find new TV releases having five good reviews within a
month:

1 correlate
2 { with (slidingWindow (1 Month) (1 Day))
3 release from TVReleases
4 reviews(5) from TVReviews
5 where (distinct reviews)
6 (forall reviews (λx. (rating x) ≥ 3.5))
7 (forall reviews (λx. (model x) == (model release)))
8 yield release }

In the example, the pattern body is surrounded by the with syntactic form. As opposed to the
implicit variable ?restriction, which injects effect handlers into the middle of the pattern computa-
tion (Figure 3), the syntactic form with encloses the pattern computation with the given handler.
This way, the entirety of the correlation pattern computation can be controlled. In our example,
the slidingWindow handler bound by with manages multiple instances (“windows”) of the cor-
relation pattern: a new instance each day, processing events within the past month. This way,
the slidingWindow handler emulates the design of stream query languages – windows impose a
temporal scope in which the query executes.

2.7 Summary

In summary, the injection mechanism via ?restriction is the main extension point for changing
the correlation behavior. Importantly, this mechanism avoids unclear and hard-coded correlation
parameters that numerous CEP and stream query languages exhibit. We support scoped variations
of the correlation semantics at different places in a program.

3 CORE LANGUAGE AND DATA TYPES

This section defines the formal syntax and semantics of a core language for effects and handlers,
λcart. In Section 4, we will define the semantics of Cartesius’ high level correlation patterns
(Section 2) by a translation into λcart.

The core language λcart is based on the second-order call-by-value λ-calculus, extended with
algebraic data types, pattern matching and recursion. In addition, it features native support for
algebraic effects, effect handlers and row-based effect polymorphism. λcart is similar to Koka [Leijen
2017b], whereas the presentation borrows heavily from Biernacki et al. [2018]. That is, we employ
explicit type/effect abstraction and subtyping.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:9

Expressions

v ::= λx .e | Λακ.e | k v | com (Val)

e ::= x | v | e e | e [T κ] | k e | fix e (Exp)

| match e {p 7→ e } | handle{h } e

x , y , z . . . (Var)

ακ, βκ, γ κ. . . (TVar)

p ::= x | k p (Pat)

h ::= x 7→ e | h; com x x 7→ e (HCls)

com ::= · · · (Cmd)

Types

T , U , V ::= α ∗ | T →ε T | D T | ∀ακ.T (Typ)

D ::= Unit | Nat | Bool | List[T] | · · · (Data)

ε ::= α e | ⟨⟩ | ⟨com, ε ⟩ (Row)

κ ::= ∗ | e (Kind)

T ∗ ::= T (TStar)

T e ::= ε (TRow)

Γ ::= ∅ | Γ, x : T | Γ, ακ (TCtx)

Fig. 4. Syntax of λcart.

Evaluation Contexts

E ::= [·] | E e | v E | E [T κ] | k v E e | fix E (ECtx)

| match E {p 7→ e } | handle {h } E

Xcom ::= [·] | X e | v X | X [T κ] | k v X e | fix X (XCtx)

| match X {p 7→ e } | handle {h } X,
where com < C(h)

Handler Capabilities C(h): C(x 7→ e) = {} C(h; com x y 7→ e) = {com} ∪ C(h)

Dynamics e1 −→ e2E[(λx .e) v] −→ E[e {v/x }] (β)
E[(Λακ.e) [T κ]] −→ E[e[T κ /ακ]] (Tapp)

E[match v {(pi 7→ ei)1≤i≤n }] −→ E[ejσ], where v ⇓(pi)1≤i≤n ⟨pj , σ ⟩ (match)
E[fix (λx .e)] −→ E[e {fix (λx .e)/x }] (fix)

E[handle {x 7→ e ;h }v] −→ E[e {v/x }] (ret)
E[handle {h } Xcom[com v]] −→ E[e {v/x , (λy .handle {h } Xcom[y])/r }], (handle)

where (com x r 7→ e) ∈ h , y is fresh

Pattern matching v ⇓p σ v ⇓p ⟨p′, σ ⟩

v ⇓x {v/x }
(vi ⇓pi σi)i∈{1. . .n}

(k v1 . . .vn) ⇓(k p1 . . .pn) ⊎
n
i=1σi

v ⇓p σ

v ⇓p p′ ⟨p , σ ⟩

∀σ ′ .v ̸⇓p σ ′ v ⇓p′ ⟨p′′, σ ⟩

v ⇓p p′ ⟨p′′, σ ⟩

Fig. 5. Dynamic semantics of λcart.

We assume that algebraic data type signatures are pre-defined and well-formed, e.g.,

type List[T] := nil | cons T List[T]

is the type of lists. Examples of data values are: ⟨⟩ is the unit value of type Unit, true and false

are of type Bool, (consT v nilT) is of type List[T] if v is of type T , (S (S 0)) is of type Nat and
⟨v1,v2⟩ is of pair type ⟨T1,T2⟩ if v1 (resp. v2) is of type T1 (resp. T2). For readability, we write
numeric literals for Nat in the obvious way, and write list values in the usual bracket notation, e.g.,
[0, 1] = consNat 0 (consNat (S 0) nilNat).

Figure 4 shows the formal syntax of λcart, which for the most part is standard. We write k v

for applications of data constructors to values and correspondingly D T for instantiations of data
types, in a fashion similar to Lindley et al. [2017]. We support polymorphism over both values and
effect rows and hence annotate type variables with the kind ∗ or e, respectively. In examples, we
sometimes omit the kind if it is unambiguous and we omit explicit type abstraction and application.

Figure 5 shows the operational semantics of λcart in terms of the reduction relation e1 −→ e2 on
expressions, using evaluation contexts [Felleisen and Hieb 1992]. The rules (β), (Tapp), (match)
and (fix) are standard, governing function application, type application, pattern matching and
recursion, respectively. For brevity, the remainder of this section focuses on effects and dynamic
semantics. We refer to Appendix A for the full static semantics.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:10 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

3.1 Algebraic Effects and Handlers

Algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2009] enable structured
programming with user-defined effects in pure functional languages. Compared to more established
language abstractions for effects, i.e., monads [Moggi 1991; Wadler 1992] and monad transform-
ers [Liang et al. 1995], algebraic effects and handlers compose more freely and conveniently, because
they support modular instantiation and modular abstraction via effect interfaces [Kammar et al.
2013]. Semantically, algebraic effects can be modeled in terms of free monads [Kiselyov and Ishii
2015; Swierstra 2008]. However, in this work, we treat effects and handlers as language primitives.
Intuitively, handlers and effect commands are generalizations of try/catch/throw for managed
exceptions. The difference is that handlers can resume evaluation at the point where the effect (e.g.,
thrown exception) occurred.

Correspondingly, λcart specifies the syntactic sort com for a set of commands (Figure 4), designat-
ing effectful operations. We assume that each command com has a predefined type com: T1 → T2,
i.e., commands are functions from the client’s perspective. We write concrete commands in bold
blue font, e.g., yield: α → Unit.

An effect handler h is a finite sequence of clauses, with one mandatory return clause x 7→ e and
optional command clauses com x r 7→ e , specifying how to handle/interpret a specific selection of
commands. We always assume that for each command there is at most one corresponding clause in
each handler. Handlers are second-class and applied to computations invoking effects using the
handle {h} e form. Intuitively, a handler h is a computation transformer T1 ⟨com ⟩⇒ε T2, turning
a computation of result type T1 and effects ⟨com⟩ (handled by h’s clauses) to a computation with
result T2 and new effects ε (cf. Appendix A).

Reduction rules (ret) and (handle) (Figure 5) govern the behavior of handler application.
The former rule applies the return clause2 of the handler for transforming the final result of the
computation. The latter rule specifies how to handle effects invoked by the computation. Similarly
to managed exceptions, a command invocation com v shifts the control flow to the currently
innermost handler with the capability to handle com. Just as Leijen [2017b], we express this by
restricting the evaluation context Xcom, i.e., evaluation may focus under a handler application only
if h does not handle com.

Once control flow shifts into a handler clause com x r 7→ e , the argument to the command
is bound to the first variable x and the resumption of the computation is bound to the second
variable r . That is, e has the capability to resume the command invocation with an answer value.
Hence, effects and handlers implement a more structured form of delimited continuation [Bauer
and Pretnar 2015; Forster et al. 2017; Kammar et al. 2013]. Note that λcart employs deep handlers,
i.e., the resumption re-applies the current handler to the rest of the computation, reflecting the
intuition that handlers are folds over computation trees [Lindley 2014].

3.1.1 Effect Typing. We assume a row-based type and effect system as in Koka, which assigns
effect rows to arrow types. For example, map:∀α β µ .(α →⟨µ ⟩ β) →⟨⟩

List[α] →⟨µ ⟩
List[β] is effect

polymorphic, indicated by the universally quantified effect variable µ. Because map applies the
supplied function elementwise to its second argument, it overall induces the same effects µ. The
order of effects in rows does not matter, e.g., ⟨yield, fail, µ⟩ is equivalent to ⟨fail, yield, µ⟩, which
is ensured by subtyping and subsumption (Appendix A).

For simplicity, in contrast to Koka, we do not group commands into effect interfaces. Instead,
each command induces itself as effect, e.g., if com: T1 → T2 is the predefined signature of com,
then T1 →⟨com⟩ T2 is the type assigned to com at the level of expressions. However, in examples we

2In examples, we omit the return clause, if it is an identity x 7→ x and omit curly braces in favor of indentation.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:11

Derived Syntax

{T }ε ; (Unit →ε T) (Thunk Typ)

{e } ; λx .e , where x < fv(e) (Thunk)

handler {h } ; λthnk.handle {h } (thnk ⟨⟩) (Handler Val)

with e1 e2 ; e1 {e2 } (With)

let implicit ?var : T = e1 in e2 (Implicit Def)

; let x = e1 in (handle {var y k 7→ k x } e2),

where x , y , k are fresh and var: Unit → T

?var ; var ⟨⟩ (Implicit Use)
Handler Combinators

_ ⊞ _ := λhl1 .λhl2 .λthnk.with hl1 with hl2 (thnk ⟨⟩) (Handler Composition)

Fig. 6. Derived syntax and combinators.

1 let accum = λn. handler(s = n)
2 x 7→ s
3 yield val resume 7→
4 resume ⟨⟩ (s + val)

1 let interactive = handler
2 yield val resume 7→
3 println val; //print next element to console
4 match readchar ⟨⟩ //read keyboard
5 \cr 7→ resume ⟨⟩ //proceed on carriage return
6 _ 7→ ⟨⟩ //otherwise, terminate

Fig. 7. Different Interpretations of yield.

sometimes abbreviate sets of commands in effect rows by a single effect name. We further allow
polymorphic commands, writing type parameters and instantiation as subscripts, e.g., returnα : α →

Unit.

3.1.2 First Class Handlers and Combinators. Recall from Section 2 that we frequently use (1)
combinators to construct restriction handlers as values, (2) handler composition ⊞ and (3) implicit
variables for injecting handlers. Accordingly, we define convenience syntax for first class handlers
and thunks in terms of functions and second class handlers (Figure 6). Encoding first class handlers
in this way keeps the core language simple, i.e., handler values become thunk-accepting functions
and handler application becomes function application. Correspondingly, if a second class handler
h has type T1 ⟨com ⟩⇒ε T2, then its first class encoding handler{h} has type {T1} ⟨

com,ε ⟩ →ε T2
(cf. Appendix A).

To clearly convey the intent (and for aesthetic reasons), we use Eff-style with syntax [Bauer and
Pretnar 2015] for applying handler values. Composing handlers (⊞) simply becomes nested handler
application.

We further allow the usual let and letrec binding forms, sequencing e1; e2 as well as parame-
terized handlers [Kammar et al. 2013; Plotkin and Pretnar 2009] in a notation similar to Koka, i.e.,
handler(x = e){h}, binding the result value of e to a variable x , which is accessible from all clauses
of handler h. Due to space limitations, we elide the desugaring of parameterized handlers and refer
to Leijen [2017b]. One may think of them as pure functions accepting the parameter value and
yielding a first class handler.

3.1.3 Example. In the following example, we consider the command yield : Nat → Unit and
the computation c := map (yield) [1, 2, 3, 4], where map is the standard mapping function on lists.
We may turn this mapping computation into an accumulating computation, without changing c ,
by enclosing the computation with an appropriate handler for yield, e.g., accum in Figure 7. This
handler sums up the yielded values in its handler parameter and would take the following high-level
evaluation steps:3

with (accum 0) (map (yield) [1, 2, 3, 4]) −→∗ with (accum 0) (cons (yield 1) (map (yield) [2, 3, 4]))

−→∗ with (accum 1) (cons ⟨⟩ (map (yield) [2, 3, 4])) −→∗ with (accum 3) (cons ⟨⟩ (cons ⟨⟩ (map (yield) [3, 4])))

−→∗ with (accum 10) [⟨⟩, ⟨⟩, ⟨⟩, ⟨⟩] −→ 10.

3We leave a proper reduction trace as an exercise to the reader.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:12 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

Syntax τ ∈ T (TStamp)

b ::= τ | ⊥ | ⊤ (TBound)

v ::= . . . | b (Val)

e ::= . . . | e ⊔ e | e≤ e (Exp)

Dynamics

b1 ⪯ b2

b1≤ b2 −→ true

(≤t)
b1 ⪯̸ b2

b1≤ b2 −→ false

(≤f)
τ ′′1 = τ1 ⊓ τ ′1 τ ′′2 = τ2 ⊔ τ ′2

⟨τ1 , τ2 ⟩ ⊔ ⟨τ ′1 , τ
′
2 ⟩ −→ ⟨τ ′′1 , τ ′′2 ⟩

(⊔)

Fig. 8. Time stamps/interval syntax and semantics.

Note that the resumption of a parameterized handler now takes an extra argument, which is the
new value of the handler parameter (Line 4 of accum).

As the previous example shows, handlers define the meaning to commands, such as yield. We
can easily give it a vastly different meaning by applying another handler, e.g., interactive in Figure 7.
This handler makes c print its elements to the console, where its progression is controlled by
the user’s keyboard interactions. The choice to progress has “flipped” from internal to external
choice, thanks to handler clauses exposing the resumption. That is, effects and handlers support
coroutining [de Moura and Ierusalimschy 2009].

3.1.4 Implicit Variables as Effects. We encode implicit variables and bindings from Section 2
in terms of effects (Figure 6, rules (Implicit Def) and (Implicit Use)). For each implicit variable
declaration ?var we associate a command var: Unit → T (without question mark). Clients (i.e.,
e2 in (Implicit Def)) invoke this command to retrieve the bound value, where an occurrence ?var
desugars into the command invocation var ⟨⟩ by rule (Implicit Use). Note that effect typing naturally
enables static tracking of implicit dependencies, e.g., the effect row assigned to e2 would have the
shape ⟨var, ε⟩, mentioning the occurrence of ?var . This form of implicit variables resembles the
dynamic scoping with static types work by Lewis et al. [2000], since command dispatch and hence
accessing the implicit value is dynamic. For static implicits, as in Haskell or Scala, we would require
coeffects [Petricek et al. 2014].

3.1.5 The Role of Handlers in Cartesius. We can think of commands as effect constructors in
computations. Dually, handlers deconstruct/observe effects as the computation unravels, i.e., they
are co-algebraic. Later, in Section 4, we exploit this intuition to encode event notifications as effects
and event observers as handlers. Yet, this is not the only use of handlers: Similarly to the interactive
example above, handlers enable us to “flip” from direct style to callback style, transparently. Last,
but not least, handlers realize restrictions (Section 2.4) of the cartesian product in the sense of
Proposition 1.2. That is, effects occurring in the cartesian product computation can be locally
reinterpreted by handlers, changing how the computation behaves.

3.2 Time and Event Values

We assume a discrete time model to track the arrival times of event notifications (Figure 8). The
set T is an infinite set of discrete, totally ordered time stamps τ . In timing predicates, we lift time
stamps to time bounds b, extending T to a complete lattice with a least element ⊥ (“minus infinity”),
a greatest element ⊤ (“plus infinity”), and greatest lower bound (⊓) as well as least upper bound
(⊔) operations. We overload ⪯ to denote the lifted order on time bounds.

Recall that an event value is evidence of a past situation of interest (Section 2.1). It is either
supplied externally or the result of joining one to many other event values. Event values have type
type Ev[T] := ev T ⟨Time, Time⟩, where the first component is the content/payload and the second
component is the occurrence time interval ⟨τ1, τ2⟩ in pair notation. For each external event, we assume
that the runtime assigns a discrete time interval containing only the event’s arrival time. Joining
n event values (ev v1 i1), . . . , (ev vn in) results in an event value (ev f (v1, . . . ,vn) (i1 ⊔ . . . ⊔ in)),

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:13

1 let rec eat: ∀α T .R[T] →⟨⟩ (Ev[T] →⟨α ⟩
Unit) →⟨async,α ⟩

Unit = Λα .ΛT .λr .λ f .

2 match (awaitT r)
3 rcons hd tl 7→ (f hd); eatα ,T tl f
4 rnil 7→ ⟨⟩

Fig. 9. Direct style, asynchronous iteration.

which merges the payloads via a function f and the time intervals with the ⊔ operator, yielding the
smallest interval containing all given intervals. In Cartesius, the merge function f corresponds to
the yield expression in patterns (Section 2.2). We discuss it further in Section 4.

3.3 Asynchrony and Push/Pull Reactives

Since event sources are asynchronous, we must commit to a push-based processing model. Inadver-
tently, this leads to a programming style where control is inverted, requiring difficult to manage
callbacks (“callback hell” [Edwards 2009]). We already demonstrated by the interactive example
above how effect handlers reconcile inversion of control with direct style, iterative programs. What
remains to be shown is how reactives from Section 2.1 integrate with this programming pattern.

In λcart, reactives R[T] correspond to a co-inductive list type, which is inspired by Elliott [2009]:

typeR[T] := Future[R′[T]] typeR′[T] := rnil | rcons Ev[T] R[T].

The data type Future[T] represents async/await style futures [Bierman et al. 2012; Haller and Miller
2013; Syme et al. 2011], which implement the potential ♢[T] of an event source to yield its next event
value. Futures can be implemented on top of algebraic effects [Dolan et al. 2017; Leijen 2017a], but we
elide the definition due to space limitations, treating Future[T] as abstract. The only way to introduce
and eliminate future values is via effects. Command asyncα ,µ :{α } ⟨µ ⟩ → Future[α] immediately
returns a future to the caller, asynchronously executing the given thunk. The elimination command
awaitα :Future[α] → α returns the result value of a completed future, if it is completed and
otherwise supends the caller. In effect rows, we simply abbreviate all the effects associated with
asynchrony as async. We assume that at the top-level, there is always a handler present for handling
the async effects.

Since R[T] resembles a (possibly infinite) list, we can now write direct style iterative programs
over the events originating from an event source, in a fashion similar to the interactive example.
For this purpose, we define the polymorphic iteration combinator eat (Figure 9), which applies a
function elementwise to all events of a given reactive. The positions of R[T] wrapped in Future[·]

precisely mark where internal choice (pull) may “flip” to external choice (push). That happens if
the next event is not yet available (Line 2 of eat). Thus, we have raised the level of abstraction and
do not need to worry about low level callback functions.

3.4 Interleaving

We conclude this section with one more abstraction for asynchrony. Recall from Figure 3, that
correlation patterns require concurrent executions of threads/strands. One can define a combinator
for that, called interleave, on top of the asynchrony system above. Here is its simplified signature:

interleave: ∀µ .List[{Unit} ⟨async,µ ⟩] →⟨async,µ ⟩
Unit.

The combinator concurrently executes a list of independent, asynchronous computation strands,
passed as thunks. Due to space limitations, we elide its definition and refer for the details to Leijen
[2017a]. Moreover, we assume that the scheduling of the concurrent execution is fair and allow the
syntax e1 ∥ . . . ∥ en ; interleave [e1, . . . , en] for readability.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:14 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

The above type is noteworthy: The effect polymorphism in interleave states that all the effects
occurring in the given asynchronous strands are observable by the caller. For example,

{awaitT x} ∥ {println ”foo”} ∥ {yield 1}

induces the effects ⟨async, println, yield⟩ to the context in which it is invoked.
This is an important property of the interleaving combinator, which we exploit for the imple-

mentation of Cartesius in the next section.

4 EVENT CORRELATIONWITH ALGEBRAIC EFFECTS

In Section 3, we defined required preliminaries for Cartesius in terms of λcart, from effects and
handlers to event values, reactives and interleaving. In this section, we present the implementation
of Cartesius from Section 2 as a shallow embedding in λcart. Our design follows the computational
interpretation of joins (Proposition 1.2 and Figure 3). In particular, while Section 2 motivated
Cartesius from the perspective of end users, this section explains the overall framework that
enables library writers to define new, custom join behaviors.

We prototyped Cartesius in two languages with native support for algebratic effecs, Koka [Leijen
2017b] and multicore OCaml [Dolan et al. 2017]. The implementations are available at:

http://github.com/bracevac/cartesius

4.1 The Marriage of Effects and Joins: Correlate by Handling

We start with motivating the underlying structure of correlation computations in Cartesius
(depicted in Figure 3), which yields a useful, modular organization principle in terms of effects and
handlers.

One can straightforwardly encode event correlation behavior over n ≥ 1 reactives by nested
iteration. Recall that in Section 3, we introduced abstractions for direct style iteration over asyn-
chronous reactives. In particular, we defined the higher order iteration function eat (Figure 9),
which “feeds” observed events one-by-one to its function argument f . Thus, nested iteration takes
the form

eat r1 (λev1.eat r2 (λev2. · · · eat rn (λevn . process ⟨ev1, . . . , evn⟩) · · ·))

for reactives r1:R[T1],. . . , rn :R[Tn] and a function process: (Ev[T1], . . . , Ev[Tn]) → Unit, which is a
callback on completed n-tuples, encapsulating a concrete event correlation behavior. The nesting
enforces a sequential selection of events, i.e., before the computation binds event evi , it must bind
(and await) all events ev j , j < i .

This programming pattern is not uncommon and can be found in similar contexts, e.g., language-
embedded query APIs and comprehension notations based on monads [Cheney et al. 2013; Meijer
et al. 2006; Wadler 1990a]. In these APIs, multiple selections translate into nested applications
of the well-known combinator bind:4 M[A] → (A → M[B]) → M[B] on a monad M[·] (cf. this
LINQ-based Rx.NET Example [2013] correlating events using nesting).

Unfortunately, such nesting can not faithfully model all kinds of joins over asynchronously
arriving events, because of the induced sequential selection order. In event correlation, reactives
produce events in an arbitrary order. For example, the combineLatest combinator from Section 2
must continue to process events from one reactive, even if the other has stopped producing events.

4bind is also known as SelectMany and flatMap.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

http://github.com/bracevac/cartesius

Versatile Event Correlation with Algebraic Effects 67:15

4.1.1 Interleaved Binding. The problem is that the (static) notation order of event bindings
determines the dynamic selection order during event correlation, while, in general, the two should
be independent. One solution is to extend monads with new combinators and laws, e.g., Joinads [Pet-
ricek et al. 2011; Petricek and Syme 2011]. However, the same drawbacks to using monads apply,
which we mention in Section 3.1. In this work, we use algebraic effects and handlers for decoupling
the (static) notation order of event bindings from the dynamic selection order during correla-
tion. Instead of nesting the n iterations, we juxtapose them, by using the interleave combinator
(Section 3.4):

{eat r1 λev1.e1} ∥ · · · ∥ {eat rn λevn .en}.
This composition puts each iteration in a separate computation strand. No event binding takes
precedence over the other, all iterations proceed independently and concurrently. Our solution
seamlessly fits in our setting, where algebraic effects and handlers are a key element of the design.
As a side-effect, the solution also represents a novel usage of algebraic effects and handlers.

4.1.2 Correlate by Handling. How can the iterations be correlated, if the interleaving separates
them? They can be correlated by effect handling! We simply follow the example in Section 3.1.3,
applying it to reactives instead of lists. That is, we elementwise invoke effect commands:

{eat r1 λev1.push1 e1} ∥ · · · ∥ {eat rn λevn .pushn en},
which after η-conversion becomes:

{eat r1 (push1)} ∥ · · · ∥ {eat rn (pushn)}. (1)
We let each iteration in the interleaving invoke a distinct, fresh effect pushi : Ev[Ti] → Unit. Its

purpose is to expose each produced event as an effect. The effect name and signature are position
dependent, so that at the type and term level, one can discern which input a push belongs to.

Importantly, the effect type of the interleaving (1) is revealing the nature of event correlation.
Recall from Section 3.4 that the effects occurring in the interleaved strands propagate to the calling
evaluation context. Thus, the effect type of expression (1) is

⟨push1, . . . , pushn , async⟩,

which intuitively states that at any time, in any order and arbitrarily often, events from the n
reactives may “pop into existence” as effect invocations. That concisely characterizes the problem
of asynchronous event correlation!

Moreover, the effect type hints at how to correlate events from n reactives. The interleaving
is namely the ideal place to implement event correlation, since it is where all events are exposed
as effects to the calling context. That is, we enclose the interleaving (1) with effect handlers and
correlate by handling:

Definition 4.1 (Handler-based Event Correlation). An asynchronous n-way join computation over
reactives r1 to rn is a composition of effect handlers h1 ⊞ · · ·⊞hk enclosing the interleaved iteration

with (h1 ⊞ · · · ⊞ hk) (({eat r1 (push1)} ∥ · · · ∥ {eat rn (pushn)}) ⟨⟩),

so that all the pushi are discharged. That is, its type has the form
(h1 ⊞ · · · ⊞ hk): {Unit} ⟨push1 , ...,pushn ,async,ε ⟩ →⟨async,ε ⟩

Unit. ■

The above definition yields a useful, modular organization principle for event correlation com-
putations. Interleaved iteration can be defined once and for all, as a generic component (Figure 3)
and there is a clearly defined structure to computations. All event occurrences “join” in the context
of the interleaving, where they can be correlated by handling. Effect handlers are modular units of
composition. They interpret underlying event notifications, embodied by the family of push effects,
which form an interface. The implementation effort for event correlation reduces to programming
handlers against that interface.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:16 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

1 let join_shapen = {
2 with triggern (?pattern) // test against pattern
3 with memoryn // memory state
4 with reifyn // cartesian product
5 with ?restrictionn // inject restrictions
6 with forAlln // observe and store events
7 ?streamsn ⟨⟩ } // inject stream iteration

1 let reifyn = handler
2 {pushi ev resume 7→
3 let entry = find ev (geti ⟨⟩) in
4 //fire the join pattern with all tuples in memory:
5 forEach (triggern) (cartesiani entry);
6 GC ⟨⟩; //delete memory entries having zero lifespan
7 resume ⟨⟩}1≤i≤n

1 let forAlln = handler
2 {pushi ev resume 7→
3 seti ((ev, inf) :: (geti ⟨⟩));
4 resume (pushi ev)}1≤i≤n

1 let memoryn =
2 ⊞n

i=1 handler(s: List[Ev[Ti] × Count] = nil)
3 geti ⟨⟩ resume 7→ resume s s
4 seti s ′ resume 7→ resume ⟨⟩ s ′

1 type Bodyn = (Ev[T1] × . . . × Ev[Tn]) →⟨yield,fail⟩
Unit

2 let triggern = handler(pattern: Bodyn)
3 triggern tuple resume 7→ pattern tuple; resume ⟨⟩ pattern

Fig. 10. Basic shape of n-way join computations.

Cartesius is all about interpreting interleavings of push effects with a suitable handler context
(h1 ⊞ · · · ⊞ hk). In the remainder of this section, we will define an encoding of correlation patterns
(Figure 3) and the constrained cartesian product (Proposition 1.2) in terms of such a handler context.

4.2 Core Framework of Cartesius

Now we make use of Definition 4.1 and encode a generic, extensible cartesian product computation
(Section 2.4 and Figure 3) in terms of handlers.

4.2.1 Interface. Our encoding requires the following signature of effect commands
pushi : Ev[Ti] → Unit, 1 ≤ i ≤ n geti : Unit → List[Ev[Ti] × Count], 1 ≤ i ≤ n

triggern : (Ev[T1] × . . . × Ev[Tn]) → Unit seti : List[Ev[Ti] × Count] → Unit, 1 ≤ i ≤ n

which is indexed by the number n of input reactives and their event types T1,. . . , Tn .
Next to the pushi commands for event notifications from Section 4.1, there are geti /seti com-

mands for reading/writing a local memory (“mailbox”), one for each input. This is the effect interface
to the local, shared memory component in Figure 3, which retains event notifications for processing.
Each memory is an association list, storing currently relevant event values along with their lifespan
of type Count := fin Nat | inf. This type specifies how often (finitely or arbitrarily often) an in-
memory event value may be reused in combination with other event values. By default, in-memory
event values have infinite lifetime (inf). This policy may be changed by restriction handlers, e.g.,
affine events (Section 2.4) would have lifespan (fin 1). Once a correlation computation materializes
a candidate n tuple, it is passed to the command triggern , for testing against the where predicate
(Figure 3).

4.2.2 Generative Effects. Above, we specified an indexed family of effects to express that each
instantiation of a join computation uses different, instance-specific version of the effects push, get,
set, and trigger. Such definitions are known as generative effects. These kinds of effects are still
an open research problem and not readily supported in current language implementations. For
simplicity, we assume a sufficient supply of predefined, differently named commands. We further
discuss in Section 7 how we approximated generative effects in our implementations.

4.2.3 Implementation. Here, we define the generic, extensible n-way cartesian product imple-
mentation, in terms of handlers for the joinn signature above. The implementation is represented

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:17

by the computation thunk join_shapen in Figure 10, which composes (i.e., layers) a number of sub-
handlers. These sub-handlers are in close correspondence to the schematic boxes inside correlate
in Figure 3, in upside down order. In the following, we explain the individual handlers comprising
this shape, bottom to top.

At the bottom, there is the implicit variable (cf. Section 3.1.4)

?streamsn : {Unit} ⟨push1 , ...,pushn ,async⟩ ,

which accepts any computation invoking the push effects for correlation, as an external depen-
dency. Its is by default bound to the interleaved iterations from Definition 4.1. The binding can be
overridden externally, e.g., our encoding of time windows requires binding a different computation
(cf. Section 4.5).

The forAlln handler in join_shapen reacts to each pushi command by adding the supplied event
to the i-th memory with an initially unbounded lifespan. Note that the resume invocation at the
end implements a coroutine behavior (Section 3.1) for the i-th iteration and forwards the current
pushi command further up the context, to give other handlers the chance to process the command
invocation. Iteration is continued as soon as one layer in the stack resumes with the unit value, or
it is stopped if a handler decides to not invoke the resumption.

The ?restrictionn implicit variable in join_shapen is our main extension point for changing the
behavior of the cartesian product by external injection of restriction handlers. We showed its usage
in Section 2 and postpone how to program concrete restriction handlers to Section 4.4.

The reifyn handler in join_shapen materializes the cartesian product over all in-memory event
values having non-zero life time, each time a new pushi event notification reaches this layer. It
then invokes the triggern command for each resulting n-tuple (see below). The function

cartesiani : (Ev[Ti] × Count) → List[Ev[T1] × . . . × Ev[Tn]]

computes the candidate tuples from the just observed event ev and the memory contents for all
inputs j , i . After triggering, used-up event values are garbage collected from the memory. This
is the terminal coroutine layer for all pushi commands, because it does not forward pushi effect
before resuming (Line 7 of reifyn).

The memoryn handler in join_shapen maintains and threads the current state of the memory
through the join computation. That is, it keeps the n-tuple of all n memory states in handler
parameters and answers the geti /seti commands (Section 4.2.1) by retrieving/updating the i-th
memory.

Finally, the triggern handler is responsible for testing each materialized candidate tuple that is
propagated via the triggern effect against the constraints in the correlation pattern, which is bound
to the implicit variable ?pattern as part of the correlation pattern translation (see next Section). Once
a candidate tuple satisfies the constraints, it is marked as consumed. That is, the life time counters
of its n components are decreased, and it is inserted into the output reactive of the correlation
computation.

4.3 Correlation Pattern Translation

Now, we translate correlation patterns (Section 2) into λcart (Section 3), in two steps: (1) desugar
the body of patterns (the part enclosed by correlate{. . .}) into λcart code and (2) instantiate a
join_shapen computation (Section 4.2) with the desugared pattern.

Language-embedded comprehension syntax is well-understood for monadic APIs [Wadler 1990a],
which translates into monad combinators. However, in this work, we present how comprehension
syntax alternatively could be translated in terms of algebraic effect handlers.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:18 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

1 ⟦ { (xi from ei)1≤i≤n where (epi)1≤i≤k yield er } ⟧ =
2 { match (bindn ⟨e1, . . . , en⟩)
3 ⟨ev x1 t1, . . . , ev xn tn⟩ 7→

4 (let implicit ?timexi : Time = ti)1≤i≤n in
5 if (ep1 ∧ · · · ∧ epk)
6 then yield (ev er (t1 ⊔ · · · ⊔ tn))
7 else fail ⟨⟩ }

1 let setupn = handler
2 bindn ⟨r1, . . . , rn⟩ body 7→

3 let implicit ?pattern = body in
4 let implicit ?streams =
5 {{eat r1 (push1)} ∥ · · · ∥ {eat rn (pushn)}}
6 in join_shapen ⟨⟩

7 let correlaten = λbody. with (gen ⊞ setupn) (body ⟨⟩)

Fig. 11. Correlation Pattern Translation. Left: Pattern Binders and Body. Right: correlate delimiter.

4.3.1 Step 1: Pattern Body Translation. The left-hand part of Figure 11 shows the first translation
step, producing code that invokes the following effects:

yield: Ev[Tn+1] → Unit bindn : (R[T1] × . . . × R[Tn]) → (Ev[T1] × . . . × Ev[Tn])

fail: Unit → Unit

The bindn command declares that the correlation pattern extracts candidate n-tuples from n input
reactives. Its purpose is mapping the variable bindings (xi from ei) to ordinary λcart bindings. That
means, the right-hand sides of from are grouped into the parameter list of bindn (Line 2), which is
invoked to extract an n-tuple from the inputs. The left-hand side variables of from are grouped
into binders of the pattern matching clause (Line 3), which decomposes a supplied n-tuple. The
where and yield clause of the pattern are transformed into an if expression. If all constraints are
satisfied, then the yield effect is invoked with the result. Otherwise, fail is invoked. yield signals
the run time that the resulting event should be appended to the output reactive of the correlation
(cf. Figure 3).

Following Section 2.5, this desugaring separates the payloads of events from their intervals, so
that programmers can write natural constraints and transformations. Accordingly, time intervals
can be accessed via the implicit variable ?timexi , which is another important use case of generative
effects in Cartesius (cf. Section 4.2.2).

Finally, the argument expression to yield re-wraps the result, implementing the event joins from
Section 3.2.

4.3.2 Step 2: Instantiation. In the second translation step (Figure 11, right-hand part), the setupn
handler stages an instance of the join shape computation (Figure 10), linking it with the previous
translation step, using implicit variables. Note how Line 2 on both sides complement each other.
The previous translation step invokes bindn , which in turn is handled by setupn . In this way, its
resumption body captures Lines 2-7 of the translated pattern as a function into the implicit variable
?pattern. Recall that ?pattern is invoked by the triggern handler (Section 4.2.3) with each tuple
materialized during event correlation.

Another responsibility of setupn is constructing and binding the interleaved iterations (Sec-
tion 4.1.2) from the given reactives r1 to rn to ?streamsn , so that the join_shapen instance correlates
its event notifications.

Finally, we encode the correlate delimiter simply as a λ-abstraction (Figure 11, right-hand part,
Line 7), which applies setupn to its argument. The latter is the translation result from the first step.

The overall pattern translation proceeds as follows:

let rout = correlate { (xi from ei)1≤i≤n
where (epi)1≤i≤k
yield er }

; let rout =
let $b = ⟦ (xi from ei)1≤i≤n · · · ⟧
in correlaten $b // $b is fresh, n is inferred

; let rout =
let $b = { match bindn · · ·}
in with (gen ⊞ setupn) ($b ⟨⟩)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:19

1 let mostRecentlyn,i = handler
2 pushi ev resume 7→
3 seti (⟨ev, inf⟩ :: nil);
4 resume (pushi ev)

1 let affinelyn,i = handler
2 pushi ev resume 7→
3 //replaces ev's lifetime in memory:
4 seti (update (geti ⟨⟩) ev (fin 1));
5 resume (pushi ev)

Fig. 12. Simple Restriction Handlers.

1 let suspendablei = handler
2 pushi ev resume 7→
3 pushi ev;
4 match peeki ⟨⟩
5 true 7→ resume ⟨⟩

6 false 7→ stashi (async_thread (resume)); ⟨⟩

1 type Strandi = Maybe[{Unit} ⟨pushi ,stashi ,peeki ,async⟩]

2 let play_pausei =
3 handler(run: Bool = true, strand: Strandi = none)
4 pausei ⟨⟩ resume 7→ resume ⟨⟩ false strand
5 playi ⟨⟩ resume 7→ match ⟨run, strand⟩
6 ⟨false, some k⟩ 7→ k ⟨⟩; resume ⟨⟩ true none

7 ⟨false, none⟩ 7→ error ⟨⟩ //illegal state
8 _ 7→ resume ⟨⟩ run strand
9 stashi k resume 7→ resume ⟨⟩ run (some k)

10 peeki ⟨⟩ resume 7→ resume run run strand

Fig. 13. Handlers for suspending/resuming interleaved iterations.

Due to space limitations, we elide the definition of the effect handler gen. Its responsibility is
transforming yielded values from effects back to ordinary data values:

gen: ∀µ .{Unit} ⟨yield,fail,async,µ ⟩ →⟨async,µ ⟩
R[Tn+1],

so that other correlations may query the results.

4.4 Implementing Restriction Handlers

Without restrictions, the join_shapen (Figure 10) computes the n-way cartesian product, where
time and space requirements grow arbitrarily large. One or more restriction handlers must be
assigned to the implicit variable ?restriction (cf. Section 2.4), in order to obtain a different correlation
computation. By default, ?restriction is bound at the top level to an identity handler{x 7→ x}, which
does not influence the computation. Now, we define concrete implementations of the restriction
handlers from Section 2.4.

4.4.1 Simple Restrictions. The mostRecentlyi handler (Figure 12, left-hand side) simply truncates
all but the last observed event from the ith memory state. That is, it effectively restricts the memory
for the ith input reactive to one cell.

The affinelyi handler (Figure 12, right-hand side) sets the lifespan counter of events to 1, i.e.,
each event value from the i-th input reactive can occur in at most one pattern match.

4.4.2 Advanced Restriction Handlers: Play/Pause Iterations. One of the design challenges we
identified in Section 1 is controllable matching behavior. We enable it with generic abstractions
that coordinate the interleaved iteration over reactives (Definition 4.1), e.g., for expressing the join
behavior of zip (Section 2.4).

We implemented the capability to suspend/resume individual eat ri (pushi) iterations for join
computations. For example, we can make the i-th iteration suspendable as follows:

{with suspendablei (eat ri (pushi))}.

The suspendablei handler (Figure 13, left-hand side) implements a simple interception of the
pushi effect (Line 3), which originates from the underlying iteration. That way, we can capture
the continuation of the iteration in resume and store it for later, if the surrounding correlation

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:20 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

1 type Si = Maybe[Ev[Ti]]

2 let aligning⟨i , j ⟩ = handler(si : Si = none, sj : Sj = none)
3 pushi ev resume 7→
4 pausei ⟨⟩; tryRelease⟨i , j ⟩ (some ev) sj (resume)
5 pushj ev resume 7→
6 pausej ⟨⟩; tryRelease⟨i , j ⟩ si (some ev) (resume)

1 let tryRelease⟨i , j ⟩ = λsi .λsj .λresume.
2 match ⟨si , sj ⟩

3 ⟨some ev1, some ev2⟩ 7→ //synchronization complete
4 resume ⟨⟩ none none; //stashes current strand
5 pushi ev1; pushj ev2; //sequentially process events
6 play1 ⟨⟩; play2 ⟨⟩ //resume iterations
7 _ 7→ resume ⟨⟩ si sj //synchronization incomplete

Fig. 14. Restriction handler for aligning interleaved iterations.

computation decides to suspend the iteration. Line 4 invokes the effect peeki : Unit → Bool,
which signals whether the iteration continues or not. In the latter case (Line 6), suspendablei stores
resume via the ambient state effect stashi : {Unit} ⟨pushi ,stashi ,peeki ,async⟩ → Unit.5 The function
async_thread is part of the asynchrony implementation and ensures that the asynchronous thread
context of resume is properly captured by stashi .

The effects peeki and stashi are handled by the play_pausei handler (Figure 13, right-hand side),
which carries the stashed suspension state and the ith iteration’s continuation in its parameters.
Additionally, play_pausei handles the two commands pausei : Unit → Unit and playi : Unit →
Unit. They provide an interface to the correlation computation for imperatively signalling the
suspension/resumption of the ith iteration strand. playi resumes the stashed iteration, if previously
pausei was invoked (Line 6). Importantly, other ongoing iterations in the interleaving remain
unaffected and continue processing.

We can now implement a wide range of coordination strategies in the join computation, such as
aligning from Section 2.4. The aligningn,S handler (Figure 14, left-hand side) causes an input subset
S ⊆ {1, . . . ,n}, |S | > 1, to be iterated in lockstep. We exemplify it for two inputs i , j, which have
the suspendable capability, but the code extends to more inputs in an obvious way. The handler
implements a synchronization barrier on the interleaved iterations for inputs i and j. To this end,
it implements a simple state machine: On each push notification from either input, we pause the
underlying iteration and store the event in the handler parameter. Then, we invoke tryRelease
(Figure 14, right-hand side) to check if the iterations are in lockstep. In this case, we forward the
buffered event notifications further up the handler stack towards the cartesian implementation
(Line 5). Once the surrounding handler context finished processing these two event values, Line 6
resumes the interleaved iteration.

To support suspension/resumption of all strands, minor modifications to the framework are
necessary. One is replacing the ?streamsn implicit binding in with iterations wrapped in suspendable.
The other is applying the handlers ⊞n

i=1play_pausei immediately after triggern in join_shapen
(Figure 10).

4.4.3 Linear/Affine Effects. Handlers in λcart support by default multi-shot resumptions, which
can have problematic interactions with resources. For instance, the pushi effects need to be one-
shot. Otherwise, future event notifications might be incorrectly duplicated. For these kinds of
effects, a linear typing discipline would be appropriate [Wadler 1990b]. However, if a correlation
incorporates pausei /playi , then pushi requires an affine type. Integrating linear/affine types with
algebraic effect handlers is an active area of research.

5Since resume accepts a unit value, it is a thunk of type {Unit}⟨pushi ,stashi ,peeki ,async⟩ .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:21

1 let slidingWindown = λlength.λperiod.
2 handler
3 bindn ⟨r1, . . . , rn⟩ body 7→

4 let implicit ?pattern = body in
5 with (winArbitern length period ⟨r1, . . . , rn⟩)
6 (({eat r1 (push1)} ∥ · · · ∥ {eat rn (pushn)}) ⟨⟩)

1 let winArbitern = λlen.λp.λrs.
2 handler(win_state = nil)
3 {pushi ev resume 7→
4 let win_state′ = updateState len p win_state rs ev
5 in dispatchi win_state′ ev;
6 resume ⟨⟩ win_state′ }1≤i≤n

Fig. 15. Handlers for Sliding Windows.

4.5 Windows

With effect handlers, windows (cf. Section 2.6) become a purely contextual restriction, which is
orthogonal to join definitions, i.e., existing restriction handlers are reusable as-is. We give a brief
sketch of sliding windows. Many other kinds of windows can be defined similarly.

We model a windowed correlation as a stateful computation that manages zero or more running
copies of a join_shapen instance (Figure 10), one per window, where windows may overlap. Figure 15,
left-hand side defines the slidingWindown delimiter. A declaration of a window overrides the default
setup behavior of the correlaten form (Figure 11). The difference is that now handler winArbitern
directly interprets the pushi commands of the interleaved iteration.

winArbitern (Figure 15, right-hand side) manages a set of active join shapes in its handler
parameter win_state. Each time a new event value is pushed by the interleaved iteration, the
updateState logic determines if new windows need to be allocated or expired ones need to be
discarded, e.g., due to the passage of time.6 Next, dispatchi multicasts the event to all active
windows for which it is relevant. In the sliding window case, it is relevant if its occurrence time
interval (Section 3.2) is entirely contained within a sliding window’s start and end times. Iteration
resumes once all relevant windows finished processing the event.

For each window instance,winArbitern binds the interleaved iteration to a “facade”, which is
maintained by the updateState function. The facade consists of an interleaving of n streams, which
are dynamically allocated per window.

5 VALIDATION OF CARTESIUS’S EXPRESSIVITY

This section validates our claim that Cartesius enables modeling and composing a range of join
semantics across the domains of CEP/streaming engines, reactive programming languages/frame-
works, as well as concurrent programming languages. We give a brief overview of different families
of programming approaches for event correlation (Section 5.1) and survey a number of works
across these families (Section 5.2) comparing their features with those of Cartesius.

5.1 Event Correlation Approaches

Complex Event Processing (CEP) features sequence patterns, aggregations and timing constraints
for events [Demers et al. 2006; Diao et al. 2007]. In SASE+ [Agrawal et al. 2008], e.g., the following
example pattern
1 PATTERN SEQ(Stock+ a[], Stock b)
2 WHERE skip_till_next_match(a[], b) {
3 [symbol]
4 and a[1].volume > 1000
5 and a[i].price > avg(a[..i-1].price)
6 and b.volume < 0.8*a[a.LEN].volume }
7 WITHIN 1 hour

6In this design, we take the time data from the event values to calculate time passage. Other designs are possible, such as
active timer interrupts.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:22 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

reports each stock that rises monotonically (Line 5, for all indices i > 0), aggregating the monotonic
event sequence in a[], where the rise is ended by an abrupt decline (Line 6). The scope of the
pattern is delimited by a sliding window of 1 hour duration (Line 6). The SEQ combination of the a[]
event sequence and the terminating b event is called a complex event (Line 1). All a and b events
should refer to the same stock (Line 3).

Event correlations in CEP languages are often expressed in dedicated pattern languages on top of
monolithic non-programmable runtime systems, i.e., the semantics are fixed and cannot be adapted
to specific application (domain) needs. The semantics of CEP languages are ad-hoc variants of
automata theory [Hopcroft et al. 2006], extended as needed to suit specific CEP systems.

Stream-relational algebra [Arasu et al. 2004, 2006; Arasu and Widom 2004] introduces streams as
time-indexed relations and notions of time windows [Krämer and Seeger 2009]. Joins are specified
in the relational algebra style. In CQL [Arasu et al. 2004], the following example
1 Select Istream(Close.item_id)
2 From Close[Now], Open[Range 5 Hours]
3 Where Close.item_id = Open.item_id

joins streams Close and Open representing end and start events for auctions, such that all auctions
closed within 5 hours are reported. The distinction against CEP is not crisp and hybrid languages
exist, i.e., embeddings of sequence patterns into CQL. However, such hybridization efforts are still
an open research problem [Cugola and Margara 2012].

Reactive programming (RP) [Cooper and Krishnamurthi 2006; Czaplicki and Chong 2013; Elliott
2009; ReactiveX [n. d.]; Salvaneschi et al. 2014] exhibits crisp semantics and programming language
embeddings. These languages feature some notion of first-class data flows, a.k.a. signals, which can
be freely composed via arbitrary expressions. In FrTime [Cooper and Krishnamurthi 2006], the
following example
1 (lift-strict (λ (y z) (/ y z))
2 (posn-x mouse-pos) (width window))

joins the mouse’s absolute x coordinate signal with the width signal of the GUI window into a
signal computing the relative coordinate.

Changes of the values of the input signals cause the joint signal’s value to be automatically
re-computed. RP languages only exhibit specific join behaviors – typically, only the most recent
values of the input signals are correlated – and it is not obvious how the richer join features of the
CEP/stream domains translate into respective RP notions.

Concurrent programming languages feature synchronization patterns [Benton et al. 2004; Conchon
and Le Fessant 1999; Fluet et al. 2008; Reppy 1991], where event joins are control structures for
coordinating concurrent executions. The following JoCaml example [Mandel and Maranget 2014]
defines join patterns [Fournet and Gonthier 1996] for discerning two interesting situations:
1 def wait() & finished(r) = reply Some r to wait
2 or wait() & timeout() = reply None to wait

Either a consumer’s wait message coincides with a producer’s finished message (top pattern) or
the producer takes too long (bottom pattern), where a timeout occurs.
5.2 Survey

The survey is restricted to features supporting event joins, and is by no means exhaustive. Table 1
and Table 2 summarizes the surveyed works (rows) and feature categories (columns) related to
joins. A checkmark (✓) indicates that a feature is readily available. Half-checked (∼) indicates
that the feature is supported to a limited degree or can be implemented on top of the available
abstractions. An empty () cell indicates that a feature is not supported.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:23

Table 1. Overview of supported join features in Cartesius and other works (1 of 2).
Event

Relations

Time Model Windows
Event

Selection

Event

Consumption

Se
qu

en
ce

A
tt

ri
bu

te

Ti
m

in
g

T.
St

am
p

In
te

rv
al

Fi
xe

d

Sl
id

in
g

Tu
m

bl
in

g

Se
ss

io
n

C
us

to
m

FI
FO

LI
FO

Po
si

tio
n

N
on

de
t.

C
us

to
m

Li
ne

ar

M
ul

tip
le

C
E
P
/
S
t
r
e
a
m

Cayuga [Demers et al. 2006] ✓ ✓ ✓ ✓ ✓ ✓

Esper [Esper [n. d.]] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓ ✓ ✓

EventJava [Eugster and Jayaram 2009] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓

Rapide [Luckham et al. 1995] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SASE+ [Agrawal et al. 2008; Diao et al. 2007] ✓ ✓ ✓ ✓ ✓ ✓ ✓

TESLA [Cugola and Margara 2010] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Google Data Flow Model [Akidau et al. 2015] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Snoop [Chakravarthy et al. 1994; Chakravarthy and Mishra 1994] ✓ ✓ ✓ ✓ ✓ ✓

A
s
y
n
c
/
R
P

Asynchronous C♯ [Bierman et al. 2012] ✓ ✓ ∼ ∼ ∼ ∼ ∼ ✓ ✓

Elm [Czaplicki and Chong 2013] ✓ ✓ ✓ ✓

FrTime [Cooper and Krishnamurthi 2006] / Flapjax [Meyerovich et al. 2009] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Push/Pull FRP [Elliott 2009] ✓ ✓ ✓ ✓ ✓ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ✓ ✓

ReactiveX [ReactiveX [n. d.]] ✓ ✓ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ✓ ✓

C
o
n
c
u
r CML [Reppy 1991] ∼ ✓ ∼ ✓ ✓

JoCaml [Conchon and Le Fessant 1999] ∼ ✓ ✓

Polyphonic C♯ [Benton et al. 2004] ✓ ✓

Manticore [Fluet et al. 2008] ∼ ✓ ∼ ✓ ✓

Cartesius ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Overview of supported join features in Cartesius and other works (2 of 2).
Ordering Non-occurrence Merge Extensibility

Te
m

po
ra

l

C
us

to
m

C
E
P
/
S
t
r
e
a
m

Cayuga ✓ ✓

Esper ∼ ∼ ✓ ✓

EventJava ✓ ∼
Rapide ✓

SASE+ ✓ ✓ ✓

TESLA ✓ ✓

Google Data Flow Model ✓ ✓ ✓

Snoop ✓

A
s
y
n
c
/
R
P

Asynchronous C♯ ✓ ✓ ✓

Elm ✓ ✓ ∼
FrTime / Flapjax ✓ ✓ ✓ ✓

Push/Pull FRP ✓ ∼ ∼ ✓ ✓

ReactiveX ✓ ✓ ∼ ✓ ✓

C
o
n
c
u
r CML ✓

JoCaml ✓

Polyphonic C♯ ✓

Manticore ✓

Cartesius ✓ ✓ ✓ ✓

Event relations:
• Sequence – language abstractions specifying a notion of observation order between different

streams of a join, e.g., “event a from s1 is followed by event b from s2”. Some languages
specialize in detecting contiguous sequences, e.g., SASE+ [Agrawal et al. 2008], which we
exemplified in Section 1. Other languages, e.g., TESLA [Cugola and Margara 2010], allow
partial orders in a join, i.e., a subset of the input events must occur in a sequence, while
others may occur in an arbitrary order.

• Attribute – constraints on the event contents, e.g., for filtering or associating by a common id.
Most of the considered works readily support this feature. Exceptions are languages based on
the Join Calculus [Fournet and Gonthier 1996], i.e., JoCaml [Mandel and Maranget 2014] and
Polyphonic C♯ [Benton et al. 2004]. The former allows deep pattern matching on constructors
in join patterns, but relating the contents of two or more events can only happen after the
join triggers. This does not fit well together with the linear event consumption semantics
(see below).

• Timing – the relative time distance between event pairs, e.g., “match if events a and b occur
at most 10ms apart from each other”.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:24 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

Time model is concerned with specifying any time information attached to events. We distinguish
between one dimensional time stamps and two dimensional intervals. The latter enables finer-
grained distinctions in combination with sequence relations [White et al. 2007]. In the CEP and
stream domain, time models and timing are much more common than in asynchronous reactive or
concurrent programming. The time model of CEP and stream systems is tied to the architecture of
the system for ordering guarantees. Additionally, event times are not always explicitly exposed in
the specification language, e.g., in SASE+ and Snoop. Even though they often provide time-related
signals, most reactive programming languages do not attach timing information to events. This is
why their time-related columns are empty ().
Windows is concerned with limiting and duplicating the extent of queries:

• Fixed creates one absolute window, e.g., “all events from May 1 to May 30”.
• Sliding creates possibly overlapping windows of a given size and period, e.g. “a window of 1

month each week”. The period increment may be fixed or event-based.
• Tumbling is a non-overlapping sliding window, e.g., “a window per month (each month)”.
• Session is event-driven, e.g., “a window from when user logs in until the user logs out”.
• Custom.

Windows in RP can be built as abstractions. This is why the related columns are half checked (∼).

Event selection:
• FIFO selects the events in received order.
• LIFO prioritizes the most-recently seen events.
• Positional enables selecting events by their position e.g., “the first n events of stream s1 with

every other event of stream s2”.
• Nondeterministic indicates that the selection of events may be random, i.e., multiple choices

are possible.
• Custom.

Event consumption:
• Linear indicates that each event is only consumed exactly once; e.g., the zip combinator is

linear.
• Multiple indicates that each event may be consumed many times; e.g., in a cartesian product,

an event in one stream is consumed as many times as the size of the other stream.
Ordering:

• Temporal indicates that events can be ordered by time.
• Custom.

Non-occurrence stands for features that enable expressing that some event(s) should not occur. To
guarantee non-occurrence, one can add timing constraints or time windows that induce a finite
waiting time or rely on anchoring events, e.g., “match a followed by b, where no c occurred in
between”. Such negative reasoning is specially challenging in asynchronous systems, and we leave
it for future work.

Merge/union is concerned with fusing events of multiple streams into one stream. Even without
anticipating it in our design, we could emulate disjunction as in CML, Manticore, JoCaml.

Extensibility is concerned with the questions: Can new abstractions be built in addition or on
top of the existing abstractions? This is possible in all reactive and concurrent programming
works, since they are language-embedded. Practically all surveyed CEP/stream systems are closed
systems. EventJava is half-checked, because it is language-embedded, but joins cannot be extended
meaningfully.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:25

Table 3. Impact of restriction handlers on a three-way cartesian product. n is the total number of random

input events, distributed evenly among three input reactives.

3-way cartesian memory (events
100 iterations) throughput (events

sec) #tuples

n = 3 · 370 (sic) 610.5 23.06 50653000
mostRecently

n = 3 · 3700000 3 279632.76 11099998
affinely

n = 3 · 3700000 ≈ 0 301311.34 3700000
zip

n = 3 · 3700000 ≈ 0 372513.73 3700000

Discussion. Caveat emptor: At first glance, Table 1 and Table 2 may suggest that Cartesius is
superior in comparison. However, this is because in this paper, we focus on event joins only, while
other works have a broader or different scope. We don’t expect that the full feature set can or
should be anticipated. Our message is that we can cover a range of features around event joins
from the literature delivering a unifying model, based on a small foundation with clear semantics
and an extensible design.

6 VALIDATION OF THE COMPUTATIONAL INTERPRETATION

In this section, we present the results of a preliminary study we conducted to gain insights on and
quantify the potential of control flow restrictions imposed by effect handlers on joins for reducing
the search space.
Setup and Metrics. We generated streams of random integer-valued events and passed them
to four variants of a 3-way join in our multicore OCaml implementation processing: (1) an un-
restricted cartesian product, (2) one with mostRecently restriction on all inputs, (3) one with the
affinely restriction on all inputs, and (4) a 3-way zip with both align and mostRecently restrictions
(Section 4.4). We executed the benchmarks on a Mac Pro, 3 GHz Intel Xeon E5-1680 CPU, 32 GB
system memory. For each join definition, we measured (1) the average number of events retained
in the join’s memory, sampled after every 100 push notifications, (2) the average throughput in
events per second, and (3) the total number of candidate tuples generated.
Results. Table 3 summarizes the results. Note that for the pure cartesian product, we usedn = 3x370
as opposed to n = 3x370000 for the other join variants. This reduction of the input size by several
orders of magnitude was necessary due to the high computational cost of the pure cartesian product.
While they process 10.000 times more events per each input, the variants of the 3-way joins with
effect handlers perform significantly faster and with negligible memory overhead:
(1) The memory consumption reflects the specified join semantics, e.g., mostRecently retains exactly
one event for each input and affinely on average retains no event (by contrast the cartesian product
join retains 610 events for the inputs).
(2) Likewise, joins restricted by effect handlers have a significantly higher throughput (between
12.000 and 16.000 times).
(3) The significant reduction of candidate tuples generated by the mostRecently, affinely, and zip
joins (between 5 and 13 times), demonstrates that effect handlers effectively avoid irrelevant
computations, which leads to the significant memory reductions and throughput improvement.

In summary, these results demonstrate that our effect handlers impose adequate control flow
restrictions to avoid needless materialization of tuples.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:26 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

7 APPROXIMATING GENERATIVE EFFECTS

We have shown in Section 4 how to embed Cartesius into a λ-calculus with algebraic effects and
handlers. There is a semantic gap to cross when deriving executable implementations from our
design, in particular concerning generativity and typing (Section 4.2). In this section, we discuss
how such conceptual challenges impacted the embedding of Cartesius into Koka [Leijen 2017b]
and multicore OCaml [Dolan et al. 2017], two state of the art implementations of algebraic effects.

The definitions in Section 4 are generative in the sense that they should be bound to a join
definition, which is a value. Two different join definitions should have their own, non-overlapping
push effects, because they can have different arities and input types.

Both languages have rather complimentary strengths: Koka has strong effect typing, but has
no support for generative effects. On the other hand, multicore OCaml has no effect typing, but
generativity can be encoded by using OCaml’s powerful module system.

Our multicore OCaml implementation, encodes generative effects with the built-in module
system.7 For example, a push effect is part of a module interface
1 module type SLOT = sig
2 type t
3 effect Push: t -> unit
4 end

and this is how we put it to use, by the example of a very simplified binary join definition, which is
a functor:
1 module Join2(T: sig type t0 type t1 type result end) =
2 struct
3 module I0 = Slot(struct type t = T.t0 evt end)
4 module I1 = Slot(struct type t = T.t1 evt end)
5 effect Trigger: S0.t * S1.t -> unit
6 let trigger p = perform (Trigger p)
7 let reify action =
8 try action () with
9 | effect (I0.Push v) k ->

10 forEach trigger (cartesian0 v); gc (); continue k ()
11 | effect (I1.Push v) k ->
12 forEach trigger (cartesian1 v); gc (); continue k ()
13 (* ... *)
14 end

Note that two different slot instances I0 and I1 are allocated, each describing its own push effect.
The trigger effect’s type of the join definition is dependent on the two slot instances type members.
We can discern the two different push effects, because they are defined in two separate module
instances.

In Koka, the push effect would need to be defined using a polymorphic effect interface:
effect cart<a> { push(index: int, v: a): () }

where the command carries an extra index parameter to discern which reactive emitted an event.
Now, a handler clause has to compare the index argument at runtime to determine whether it is
responsible for handling a push effect:
1 handler {
2 push(i, v) ->
3 if (equal(i,1)) then
4 forEach trigger (cartesian1 v); gc (); resume ()
5 else resume (push(i,v)) }

7We thank Matija Pretnar for pointing out the encoding in a personal correspondence.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:27

Another drawback of the Koka implementation is that unlike the multicore OCaml version, it
does not support multiple instantiations of the cart<a> interface with different types, e.g., to join
reactives of type Int and String. Due to parametricity, handlers for cart<a> must treat the pushed
event values uniformly. Given that Koka has no notion of type classes, this is quite limiting, e.g.,
when printing event values for debugging purposes. We were forced to give up polymorphism for
the cart<a> effect interface, fixing the type of reactives to Int.

We conclude that generativity is useful, but not yet well supported in current languages with
built-in algebraic effects. We hope that our uses cases inspire new language designs for generativity.

8 RELATEDWORK

To the best of our knowledge, this is the first work to propose algebraic effects and handlers as a
common substrate to model semantic variants of reactive computations. In this section, we compare
our work against other approaches that are similar in scope, i.e., unifying models.

Brooklet by Soulé et al. [Soulé et al. 2010] is a calculus for stream processing languages that
models stream computations as static, asynchronous and acyclic data flow graphs. For example,
stream-relational algebra languages, such as CQL [Arasu et al. 2006] and batch processing languages
can be compiled into the calculus. The calculus emphasizes the topology of stream computations,
which makes it well-suited as an intermediate representation for domain-agnostic optimizations
at the operator graph level [Hirzel et al. 2013]. The internal behavior of a graph node remains
a “black box” in the form of a deterministic pure state transition function, acting on a (possibly
shared) state and a number of input queues. Cartesius is similar in that there is a strict separation
between impurity and purity, mediated by algebraic effects. However, Brooklet itself has no means
of specifying the internal combination behavior of nodes and is not language embedded. Cartesius
is complementary, enabling the declaration of the behavior inside the black boxes. Coordination
and state sharing among nodes can be achieved by lexically enclosing with suitable handlers.

Streams à la carte, by Biboudis et al. [Biboudis et al. 2015], abstract over the semantics of stream
pipelines using Oliveira et al.’s object algebra approach [Oliveira and Cook 2012; Oliveira et al.
2013], which models algebras in terms of OO interfaces and generics. Algebra instances are similar
to handlers in the sense that both are modular folds over a given signature of operations. However,
object algebras do not capture delimited control and must be passed as an explicit parameter to
programs. The design by Biboudis et al. facilitates switching backend to execute a stream program,
e.g., between push and pull streams. In contrast, Cartesius fixes the choice to Elliott’s push/pull
streams [Elliott 2009] to support direct style correlation patterns in consumers, even though event
production is push-based. This works well in combination with effect handlers, because of their
ability to capture the continuation.

Stream fusion, to completeness by Kiselyov et al. [Kiselyov et al. 2017], uses staging to remove
abstraction overhead of a range of pull-based stream combinators. The generated primitive, loop-
based code rivals hand-written implementations. Pull-based streams can be thought of as generators
or unfolds. A key finding of Kiselyov et al. is staging of zip – which is complex, because the two
streams need to be advanced in lock step, yet a (non-linear) stream may need to be advanced a
statically unknown number of times to produce one element. Their solution involves ensuring
that one of the streams is linear through reification; they argue that there is no way around this
inefficiency, even with hand-written code. In our case, we already reify the memory states, so
aligning them for zipping is not particularly difficult. Yet, a thorough assessment of the performance
of our solution is left for future work.

The SECRET model [Botan et al. 2010; Dindar et al. 2013] examines windows in stream processing
engines and provides a unifying description of vastly different windowing behaviors among varied

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:28 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

systems. In Cartesius, we model windows as contextual restrictions (see Section 4.5), and leave
the exact behavior of how events are dispatched to windows (e.g., sliding) open to implementors.

Ziarek et al. [2011] contribute a composable and extensible design for asynchronous events,
based on the Concurrent ML API. Their work targets general purpose, asynchronous programming,
while the focus of Cartesius is on joining asynchronous event streams. Nevertheless, some notable
similarities exist to handler-based event correlation (Definition 4.1). Handling the interleaved
iterations is similar to applying CML’s choose combinator to CML events. The effect handlers
for push correspond to the case analysis of choose. Among the differences are that choose is
one shot, defining a single event, whereas Cartesius continuously applies the case analysis to
event sequences, producing multiple events. Moreover, in our context, events are effect invocations
and not the events arriving on the streams being composed. Finally, their work supports parallel
executions, whereas Cartesius so far only supports single step, interleaving concurrency.

9 CONCLUSION

We used algebraic effects and handlers to reduce the problem of expressing diverse join features
to the problem of writing modular effect handlers that influence a cartesian product evaluation.
Operationally, event correlation can be understood in terms of specific selection and consumption
patterns on a local memory of event observations. We exploited this insight to avoid needless
materialization of event tuples, demonstrating that efficiency is achievable despite having a design
based on generic, modular components.

A TYPE SYSTEM

Expression Typing Γ ⊢ e : T |ε

Γ, x :T , Γ′ ⊢ x : T | ⟨⟩
Γ, x :T1 ⊢ e : T2 |ε

Γ ⊢ λx .e : T1 →ε T2 | ⟨⟩

Γ, ακ ⊢ e : T | ⟨⟩

Γ ⊢ Λακ.e : ∀ακ.T | ⟨⟩

k (Ti)1≤i≤n ∈ D S (Γ ⊢ ei : Ti |ε)1≤i≤n

Γ ⊢ k (ei)1≤i≤n : D S |ε

comS : T1 → T2

Γ ⊢ comS : T1 →
⟨comS ⟩ T2 |ε

Γ ⊢ e1: T1 →ε T2 |ε Γ ⊢ e2: T1 |ε

Γ ⊢ e1 e2: T2 |ε

Γ ⊢ e : ∀ακ.T1 |ε

Γ ⊢ e [T κ
2]: T1[T κ

2 /ακ] |ε

Γ ⊢ e : T →ε T |ε

Γ ⊢ fix e : T |ε

Γ ⊢ e : T1 |ε (Γ ⊢ pi : T1 , Γi)1≤i≤n

(Γ, Γi ⊢ ei : T2 |ε)1≤i≤n (pi)1≤i≤n covers T1

Γ ⊢ match e {(pi 7→ ei)1≤i≤n }: T2 |ε

Γ ⊢ e : T1 | ⟨com, ε ⟩ Γ ⊢ h: T1
⟨com⟩⇒ε T2

Γ ⊢ handle {h } e : T2 |ε

Γ ⊢ e : T1 |ε1 Γ ⊢ T1 ≤ T2 Γ ⊢ ε1 ≤ ε2

Γ ⊢ e : T2 |ε2

Γ, x0:T1 ⊢ e0: T2 |ε (comi : Ui → Vi)1≤i≤n
(Γ, xi : Ui , ri : Vi →ε T2 ⊢ ei : T2 |ε)

Γ ⊢ {x0 7→ e0; (comi xi ri 7→ ei)1≤i≤n } : T1
⟨com1 , . . .,comn ⟩⇒ε T2

Subtyping Γ ⊢ T κ
1 ≤ T κ

2

Γ ⊢ T κ ≤ T κ Γ ⊢ ⟨⟩ ≤ ε Γ ⊢ ⟨com1 , com2 , ε ⟩ ≤ ⟨com2 , com1 , ε ⟩
Γ ⊢ ε1 ≤ ε2

Γ ⊢ ⟨com, ε1 ⟩ ≤ ⟨com, ε2 ⟩

Γ ⊢ T κ
1 ≤ T κ

2 Γ ⊢ T κ
2 ≤ T κ

3

Γ ⊢ T κ
1 ≤ T κ

3

Γ, ακ ⊢ T1 ≤ T2

Γ ⊢ ∀ακ.T1 ≤ ∀ακ.T2

Γ ⊢ T ′
1 ≤ T1 Γ ⊢ ε1 ≤ ε2 Γ ⊢ T2 ≤ T ′

2

Γ ⊢ (T1 →ε1 T2) ≤ (T ′
1 →ε2 T ′

2)

ACKNOWLEDGMENTS

For feedback on this work, we thank Philipp Haller, Sven Keidel, Neel Krishnaswami, Daan Leijen,
Sam Lindley, Matija Pretnar, KC Sivaramakrishnan and Philip Wadler.

This work is supported by the European Research Council (ERC, Advanced Grant No. 321217
and Consolidator Grant No. 617805) and by the German Research Foundation (DFG, SFB 1053 and
SA 2918/2-1).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

Versatile Event Correlation with Algebraic Effects 67:29

REFERENCES

Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Efficient Pattern Matching over Event Streams.
In Proceedings of the ACM SIGMOD International Conference on Management of Data.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam
McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order Data Processing. Proceedings of
the VLDB Endowment 12 (2015), 1792–1803.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2004. CQL: A Language for Continuous Queries over Streams and
Relations. In Database Programming Languages. Springer Berlin Heidelberg.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous Query Language: Semantic Foundations
and Query Execution. The VLDB Journal (2006).

Arvind Arasu and Jennifer Widom. 2004. A Denotational Semantics for Continuous Queries over Streams and Relations.
SIGMOD Record (2004).

Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. 2013. A
survey on reactive programming. Comput. Surveys 45, 4 (2013).

Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic Effects and Handlers. Journal of Logical and Algebraic
Methods in Programming 84, 1 (2015), 108–123.

Nick Benton, Luca Cardelli, and Cédric Fournet. 2004. Modern Concurrency Abstractions for C#. Transactions on Programming
Languages and Systems (TOPLAS) 26, 5 (2004), 769–804.

Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis. 2015. Streams à la carte: Extensible Pipelines
with Object Algebras. In Proceedings of European Conference on Object-Oriented Programming (ECOOP).

Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen. 2012. Pause ’n’ Play: Formalizing
Asynchronous C♯. In Proceedings of European Conference on Object-Oriented Programming (ECOOP), James Noble (Ed.).

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation of
algebraic effects and handlers. PACMPL POPL (2018).

Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J. Miller, and Nesime Tatbul. 2010. SECRET: A Model
for Analysis of the Execution Semantics of Stream Processing Systems. Proceedings of the VLDB Endowment (2010).

Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka. 2014. Fair Reactive Programming. In Proceedings
of Symposium on Principles of Programming Languages (POPL) (POPL ’14). ACM, 361–372.

Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. 1994. Composite Events for Active Databases:
Semantics, Contexts and Detection. In Proceedings of International Conference on Very Large Data Bases (VLDB).

S. Chakravarthy and D. Mishra. 1994. Snoop: An expressive event specification language for active databases. Data &
Knowledge Engineering 14, 1 (1994), 1 – 26.

James Cheney, Sam Lindley, and Philip Wadler. 2013. A practical theory of language-integrated query. In Proceedings of
International Conference on Functional Programming (ICFP).

Silvain Conchon and Fabrice Le Fessant. 1999. JoCaml: mobile agents for Objective-Caml. In First and Third International
Symposium on Agent Systems Applications, and Mobile Agents (ASAMA).

Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding Dynamic Dataflow in a Call-by-Value Language. In
Proceedings of the European Conference on Programming Languages and Systems (ESOP).

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: A Formally Defined Event Specification Language. In Proceedings
of the International Conference on Distributed Event-based Systems (DEBS).

Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of Information: From Data Stream to Complex Event
Processing. Comput. Surveys 44, 3 (2012), 15:1–15:62.

Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In Proceedings of
Conference on Programming Language Design and Implementation (PLDI).

Ana Lúcia de Moura and Roberto Ierusalimschy. 2009. Revisiting coroutines. ACM Trans. Program. Lang. Syst. 31, 2 (2009).
Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. 2006. Towards Expressive

Publish/Subscribe Systems. In Proceedings of the 10th International Conference on Advances in Database Technology
(EDBT’06).

Yanlei Diao, Neil Immerman, and Daniel Gyllstrom. 2007. SASE+: An Agile Language for Kleene Closure Over Event Streams.
Technical Report. UMass Technical Report 07.

Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas, and Irina Botan. 2013. Modeling the execution semantics of
stream processing engines with SECRET. The VLDB Journal (2013).

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White. 2017.
Concurrent System Programming with Effect Handlers. In Proceedings of the Symposium on Trends in Functional Pro-
gramming.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

67:30 Bračevac, Amin, Salvaneschi, Erdweg, Eugster, and Mezini

Jonathan Edwards. 2009. Coherent Reaction. In Proceedings of Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

Conal M. Elliott. 2009. Push-pull Functional Reactive Programming. In Proceedings of the 2nd ACM SIGPLAN Symposium on
Haskell (Haskell’09).

Esper. [n. d.]. Esper. http://www.espertech.com/esper/.
Patrick Eugster and K.R. Jayaram. 2009. EventJava: An Extension of Java for Event Correlation. In Proceedings of European

Conference on Object-Oriented Programming (ECOOP).
Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theoretical Computer Science 103, 2 (1992), 235–271.
Matthew Fluet, Mike Rainey, John H. Reppy, and Adam Shaw. 2008. Implicitly-threaded parallelism in Manticore. In

Proceedings of International Conference on Functional Programming (ICFP).
Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2017. On the Expressive Power of User-defined Effects:

Effect Handlers, Monadic Reflection, Delimited Control. Proc. ACM Program. Lang. 1, ICFP (2017).
Cédric Fournet and Georges Gonthier. 1996. The reflexive CHAM and the Join-calculus. In Proceedings of Symposium on

Principles of Programming Languages (POPL).
Philipp Haller and Heather Miller. 2013. RAY: Integrating Rx and Async for Direct-Style Reactive Streams. (2013).
Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm. 2013. A catalog of stream processing

optimizations. Comput. Surveys (2013).
John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2006. Automata theory, languages, and computation. Pearson.
Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In Proceedings of International Conference on

Functional Programming (ICFP).
Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream Fusion, to Completeness. In

Proceedings of Symposium on Principles of Programming Languages (POPL).
Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. In Proceedings of Haskell Symposium.
Jürgen Krämer and Bernhard Seeger. 2009. Semantics and implementation of continuous sliding window queries over data

streams. ACM Transactions on Database Systems 34, 1 (2009), 1–49.
Neelakantan R. Krishnaswami. 2013. Higher-order Functional Reactive Programming Without Spacetime Leaks. In Proceed-

ings of International Conference on Functional Programming (ICFP).
Daan Leijen. 2017a. Structured Asynchrony with Algebraic Effects. In Proceedings of the International Workshop on Type-

Driven Development (TyDe).
Daan Leijen. 2017b. Type directed compilation of row-typed algebraic effects. In Proceedings of Symposium on Principles of

Programming Languages (POPL).
Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. 2000. Implicit Parameters: Dynamic Scoping with

Static Types. In Proceedings of Symposium on Principles of Programming Languages (POPL).
Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In Proceedings of

Symposium on Principles of Programming Languages (POPL).
Sam Lindley. 2014. Algebraic effects and effect handlers for idioms and arrows. In Proceedings of the 10th ACM SIGPLAN

workshop on Generic programming, WGP 2014, Gothenburg, Sweden, August 31, 2014.
Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of Symposium on Principles of

Programming Languages (POPL).
Hai Liu and Paul Hudak. 2007. Plugging a Space Leak with an Arrow. (2007), 29 – 45. Festschrift honoring Gary Lindstrom

on his retirement from the University of Utah after 30 years of service.
David C. Luckham. 2001. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems.

Addison-Wesley Longman Publishing Co., Inc.
D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. 1995. Specification and analysis of system

architecture using Rapide. IEEE Transactions on Software Engineering 21, 4 (1995), 336–354.
Louis Mandel and Luc Maranget. 2014. The JoCaml language, Documentation and user’s manual, Chapter on Concurrent

programming. http://jocaml.inria.fr/doc/concurrent.html.
Erik Meijer, Brian Beckman, and Gavin Bierman. 2006. LINQ: Reconciling Object, Relations and XML in the .NET Framework.

In Proceedings of the ACM SIGMOD International Conference on Management of Data.
Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram

Krishnamurthi. 2009. Flapjax: A Programming Language for Ajax Applications. In Proceedings of Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).

Neil Mitchell. 2013. Leaking Space. ACM Queue 11, 9, Article 10 (Sept. 2013), 14 pages.
Eugenio Moggi. 1991. Notions of computation and monads. Information and computation 93, 1 (1991), 55–92.
Bruno C.d.S. Oliveira and William R. Cook. 2012. Extensibility for the Masses - Practical Extensibility with Object Algebras.

In Proceedings of European Conference on Object-Oriented Programming (ECOOP).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

http://www.espertech.com/esper/
http://jocaml.inria.fr/doc/concurrent.html

Versatile Event Correlation with Algebraic Effects 67:31

Bruno C.d.S. Oliveira, Tijs van der Storm, Alex Loh, and William R. Cook. 2013. Feature-Oriented Programming with Object
Algebras. In Proceedings of European Conference on Object-Oriented Programming (ECOOP).

Tomas Petricek, Alan Mycroft, and Don Syme. 2011. Extending monads with pattern matching. In Proceedings of Haskell
Symposium.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A calculus of context-dependent computation. In
Proceedings of International Conference on Functional Programming (ICFP).

Tomas Petricek and Don Syme. 2011. Joinads: A Retargetable Control-Flow Construct for Reactive, Parallel and Concurrent
Programming. In Proceedings of the International Symposium on Practical Aspects of Declarative Languages (PADL).

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures (2003).
Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Proceedings of the European Conference on

Programming Languages and Systems (ESOP).
ReactiveX. [n. d.]. ReactiveX. http://reactivex.io.
John H. Reppy. 1991. CML: A Higher-Order Concurrent Language. In Proceedings of Conference on Programming Language

Design and Implementation (PLDI).
Rx.NET Example. 2013. Event Correlation. https://github.com/dotnet/reactive/blob/master/Rx.NET/Samples/

EventCorrelationSample/EventCorrelationSample/Program.cs#L55
Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: Bridging Between Object-oriented and Functional Style

in Reactive Applications. In Proceedings of the International Conference on Modularity. ACM.
Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik, Henrique Andrade, Vibhore Kumar, and Kun-Lung Wu. 2010.

A Universal Calculus for Stream Processing Languages. In Proceedings of the European Conference on Programming
Languages and Systems (ESOP). Springer-Verlag.

Wouter Swierstra. 2008. Data types à la carte. Functional Programming (2008).
Don Syme, Tomas Petricek, and Dmitry Lomov. 2011. The F# Asynchronous Programming Model. In Proceedings of the

International Symposium on Practical Aspects of Declarative Languages (PADL).
Philip Wadler. 1990a. Comprehending monads. In LISP and Functional Programming.
Philip Wadler. 1990b. Linear types can change the world. In Proceedings of the IFIP Working Group 2.2/2.3 Working Conference

on Programming Concepts and Methods.
Philip Wadler. 1992. The Essence of Functional Programming. In Proceedings of Symposium on Principles of Programming

Languages (POPL).
Walker White, Mirek Riedewald, Johannes Gehrke, and Alan Demers. 2007. What is "Next" in Event Processing?. In

Proceedings of the Symposium on Principles of Database Systems (PODS).
Lukasz Ziarek, K. C. Sivaramakrishnan, and Suresh Jagannathan. 2011. Composable asynchronous events. In Proceedings of

Conference on Programming Language Design and Implementation (PLDI).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 67. Publication date: September 2018.

http://reactivex.io
https://github.com/dotnet/reactive/blob/master/Rx.NET/Samples/EventCorrelationSample/EventCorrelationSample/Program.cs#L55
https://github.com/dotnet/reactive/blob/master/Rx.NET/Samples/EventCorrelationSample/EventCorrelationSample/Program.cs#L55

	Abstract
	1 Introduction
	2 An Overview of Cartesius
	2.1 Event Sources
	2.2 Expressing Event Relations in Direct Style
	2.3 Computational Interpretation
	2.4 Customizing Matching Behavior with Algebraic Effects
	2.5 Natural Specifications with Implicit Time Data
	2.6 Time Windows as Contextual Abstractions
	2.7 Summary

	3 Core Language and Data Types
	3.1 Algebraic Effects and Handlers
	3.2 Time and Event Values
	3.3 Asynchrony and Push/Pull Reactives
	3.4 Interleaving

	4 Event Correlation with Algebraic Effects
	4.1 The Marriage of Effects and Joins: Correlate by Handling
	4.2 Core Framework of Cartesius
	4.3 Correlation Pattern Translation
	4.4 Implementing Restriction Handlers
	4.5 Windows

	5 Validation of Cartesius's expressivity
	5.1 Event Correlation Approaches
	5.2 Survey

	6 Validation of the Computational Interpretation
	7 Approximating Generative Effects
	8 Related Work
	9 Conclusion
	A Type System
	Acknowledgments
	References

