
What are the Odds?
Probabilistic Programming in Scala

Sandro Stucki∗ Nada Amin∗ Manohar Jonnalagedda∗

∗EPFL, LAMP
{first.last}@epfl.ch

Tiark Rompf ‡∗

‡Oracle Labs
{first.last}@oracle.com

ABSTRACT
Probabilistic programming is a powerful high-level paradigm
for probabilistic modeling and inference. We present Odds, a
small domain-specific language (DSL) for probabilistic pro-
gramming, embedded in Scala. Odds provides first-class
support for random variables and probabilistic choice, while
reusing Scala’s abstraction and modularity facilities for com-
posing probabilistic computations and for executing deter-
ministic program parts. Odds accurately represents possibly
dependent random variables using a probability monad that
models committed choice. This monadic representation of
probabilistic models can be combined with a range of infer-
ence procedures. We present engines for exact inference, re-
jection sampling and importance sampling with look-ahead,
but other types of solvers are conceivable as well. We evalu-
ate Odds on several non-trivial probabilistic programs from
the literature and we demonstrate how the basic probabilis-
tic primitives can be used to build higher-level abstractions,
such as rule-based logic programming facilities, using ad-
vanced Scala features.

Categories and Subject Descriptors
D.3.m [Software]: Programming Languages—Miscella-
neous

General Terms
Languages

Keywords
Probabilistic programming, probability monad, Scala,
EDSL, probabilistic inference

1. INTRODUCTION
Probabilistic models and probabilistic inference form the

core of the machine learning algorithms that enable sophis-
ticated technology such as self-driving cars, natural lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scala ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2064-1 ...$15.00.

guage processing systems, or recommender engines. How-
ever, building probabilistic reasoning systems is hard and
requires expertise across several disciplines. The goal of
probabilistic programming is to drastically simplify this task
by expressing probabilistic models as high-level programs.
Probabilistic programming languages like Church [6], Han-
sei [7], BLOG [11] or Figaro [15] provide abstractions to rep-
resent and manage uncertain information in addition to the
usual deterministic control and data abstractions expected
from any high-level programming language. For example, in
a probabilistic program, an unknown quantity can be repre-
sented as a random variable. The language implementation
then provides a range of inference procedures to solve the
model, i.e. determine probable values for the random vari-
ables in the program that represent the model. Thus, prob-
abilistic programming shares some obvious similarities with
logic programming.

In this paper, we present Odds, an embedded domain-
specific language (DSL) for probabilistic programming in
Scala. Odds is not a closed system but rather a library
that extends Scala with support for first-class random vari-
ables, represented as values of type Rand[T]. Random vari-
ables are created by invoking a probabilistic choice operator
that corresponds to a certain probability distribution. For
example, the expression flip(0.5) creates a random variable
of type Rand[Boolean] representing a fair coin toss. Random
variables can also be combined to form new random vari-
ables. For example, given a pair of random variables a, b of
type Rand[Int], the term a + b denotes a new random variable
with a distribution that depends on both a and b. Random
variables form a monad, and deterministic operations like +
on Int values can be lifted to the monadic level in the usual
way. The semantics of random variables correctly models
mutually dependent random variables, and demands that,
for example, a + a will always be equal to 2 * a. While this
fact may seem self-evident, it does not hold for most previ-
ous embeddings based on simpler probability monads. A key
aspect of our monad implementation is to maintain observ-
able identities and committed choices for random variables,
instead of modeling only probability distributions.

Contributions.
In summary, this paper makes the following contributions:

• We present Odds, an embedded DSL that extends
Scala with first-class random variables Rand[T] and
probabilistic choice operators.

• We present a monadic interface for probabilistic choice

that accurately represents mutually dependent random
variables in a referentially transparent way as monad
instances, with observable identities and committed
choices for random variables. Conceptually, our monad
represents lazy weighted non-determinism with call-
time choice, similar to those described in [4] and [15].

• Inspired by previous work on the Hansei DSL [7], we
implement several probabilistic inference strategies, in-
cluding rejection sampling, exact inference and impor-
tance sampling with look-ahead. These inference algo-
rithms can be used interchangeably or even together
in a single probabilistic program.

• We evaluate Odds by implementing several probabilis-
tic programs of realistic complexity from the literature.

• We show how advanced Scala features can be used
to build even higher level abstractions on top of the
probabilistic primitives. As an example, we present a
rule-based logic programming system using virtualized
pattern matching.

Odds builds on a large body of previous work on embedded
probabilistic programming. Much of the design is inspired
by the probabilistic programming DSL Hansei [7], although
there are some key differences. The most obvious differ-
ence is that Hansei embeds probabilistic choice shallowly,
using continuations instead of explicit monad instances, and
without distinguishing random variables from deterministic
values in the type system.

One of Odds’ key design goals is to enable programmers
to focus on specifying the actual probabilistic model without
worrying about secondary operational aspects such as when
and what to memoize; decisions which often need to be made
explicitly in other systems.

The rest of this paper is structured as follows: We re-
view the challenges of embedded probabilistic programs as
a problem statement in Section 2. We provide introductory
programming examples in Section 3. We present key ideas of
the implementation in Section 4. We show a rule-based logic
programming built on top of Odds in Section 6. We discuss
our evaluation in Section 5, related work in Section 7, and
future work and conclusion in Section 8.

2. EMBEDDINGS AGAINST ALL ODDS
Probabilistic computation does not exist in a vacuum;

large parts of any probabilistic program are deterministic.
Moreover, probabilistic programs should be able to benefit
from high-level language abstractions like objects, classes or
higher order functions, which do not directly contribute to
the probabilistic computation but are essential for modular-
ity, composition and reuse of program functionality.

Compared to stand-alone solutions, embedding probabilis-
tic programming in a general-purpose language such as Scala
has the decisive advantage of linguistic reuse: all of the host
language’s abstraction capabilities are immediately available
to the deterministic parts of a computation. Following an
embedded approach also means that probabilistic program-
ming is easily accessible to programmers already familiar
with the host language and with the basic concepts of prob-
ability.

Embedding strategies in general come in two flavors, shal-
low or deep. A shallow embedding identifies random values

with regular values of the host language. For example, a
probabilistic computation over integers will just have type
Int. A deep embedding, by contrast, assigns a separate type
to probabilistic values, for example Rand[Int]. While a shal-
low embedding is more seamless and may seem more in-
tuitive at first, it blurs the distinction between the underly-
ing mathematical concepts of outcomes, deterministic values
that can be part of a probability distribution and random
variables, entities of uncertainty that can take on outcomes
according to their associated probability distribution.

The type-level distinction of a deep embedding mod-
els these concepts more accurately and makes it possible
to treat random variables as first class objects without
necessarily observing their outcomes (probabilistic meta-
programming). For example, we can easily define combi-
nator functions on random variables or store random vari-
ables in data structures without introducing additional un-
certainty.

A key challenge in designing a deep embedding is to pre-
vent the embedding abstraction from leaking, i.e. making
sure that the semantics of the embedded language align well
with the host language. This is especially true if the model
of evaluation of the embedded language and the host lan-
guage is quite different, as is the case here.

A common approach to build deep embeddings is to use
some form of monad. For probabilistic programming, sev-
eral variants of probability monads have been proposed [16,
5, 3, 16]. What is common to all of them is that the monad
makes probabilistic choice points explicit, and sequences
probabilistic computations using the monadic bind opera-
tor. This works very well as long as the whole computation
stays inside the monad, but things get significantly more
complicated when we combine host language computations
and monadic computations. The root issue is that we are
still working with two separate languages, the probabilis-
tic one inside the monad, and the host language outside.
Referential transparency and desirable equational proper-
ties that hold within the monad do not easily carry over if
we start composing instances of the monad, which are first-
class host language values. A particular troublesome issue
appears when dealing with random variables that may be
correlated, i.e. are not independent.

To substantiate this discussion with an example, let us lift
the integer + operation to random variables:

def infix_+(r1: Rand[Int], r2: Rand[Int]) =
for (v1 <- r1; v2 <- r2) yield v1 + v2

The above definition uses Scala’s for notation, which is
syntactic sugar for the monadic bind operation, and addi-
tional support for defining infix methods provided by Scala-
Virtualized [17]. The lifted addition works nicely when in-
voked on independent random variables, but given its type
signature, we would expect it to be generic and work for all
pairs of random variables. It is instructive to see what hap-
pens in the following case, where uniform models a discrete
random choice with uniform probabilities:

val r = uniform(0, 1)
r + r

Mathematically, if r is a random variable, we would expect
r+r to be equal to 2r, with an outcome of either 0 or 2 with
equal probability. However, what we get instead is the sum
of two independent, identically distributed indicators, with
a combined outcome of either 0, 1, 2 with respective proba-

bilities 1
4
, 1

2
, 1

4
. To obtain the desired result and achieve the

intuitive equational reasoning, one would have to explicitly
bind the r once on the monadic level:

for (r <- uniform(0, 1)) yield (r + r)

This means that in practice, the whole program needs to be
transformed to monadic style, which breaks modularity and
encapsulation. Furthermore, even though there is a type-
level distinction between probabilistic and regular computa-
tions, the types do not help in tracking this intuitive error
and they do not offer any guidance on which composition
operations are well behaved and which are not.

Shallow approaches, as exemplified by Hansei [7], are less
prone to these issues. Since a Rand[Int] is just an Int, the
program is conceptually “forked” at each probabilistic choice
point using continuations. Here, the evaluation order of
probabilistic choices inherits exactly the evaluation order
of the host language. However, the use of continuations
comes at the expense of forking the entire computation right
there, not just the probabilistic parts. To regain efficiency,
this requires the programmer to explicitly delay or memoize
certain parts of the model (letlazy operator in Hansei) to
bring choice points and their observations closer together,
and thus reduce the search space. In this paper, we are con-
cerned with bringing reuse of evaluation order to monadic
deep embeddings and achieve an intuitive behavior similar
to shallow approaches, while retaining the deep embedding
benefits like distinguishing between choices and observations
on the type-level.

3. A TASTE OF ODDS
Let us solve a puzzle related to population estimation from

the literature [11]:

An urn contains an unknown number of balls–
say, a number chosen from a uniform distribu-
tion. Balls are equally likely to be blue or green.
We draw some balls from the urn, observing the
color of each and replacing it. We cannot tell
two identically colored balls apart; furthermore,
observed colors are wrong with probability 0.2.
How many balls are in the urn? Were the balls
drawn twice?

We first define the models of this problem in Odds, inde-
pendently of the inference engine. We then illustrate how
to run the models. Finally, we discuss the intuition behind
Odds’ semantics.

3.1 Defining Models
We assume Color to be defined as a usual Scala algebraic

datatype with two variants, Blue and Green, and a function
opposite_color to toggle from one to the other. Now, we can
define our first probabilistic function. The observation of
color is faulty, with a 20% error rate:

def observed_color(c: Color): Rand[Color] =
flip(0.8).map(if (_) c else opposite_color(c))

flip(p) returns a random variable of type Rand[Boolean] whose
distribution is true with probability p. Since random vari-
ables are monads, we can use a monadic map to inspect the
result of a flip.

We define some random processes which capture the priors
of our problem. We assume that the number of balls is

a random variable uniformly distributed between 1 and 8
and that the color of each ball is uniformly either Blue or
Green. The true color of a ball never changes. So we create
a sequence of independent random variables, one for each
ball.

val nballs_max = 8
def nballs_prior(): Rand[Int] =
uniform(1 to nballs_max : _*)

def ball_colors_prior(): IndexedSeq[Rand[Color]] =
(0 until nballs_max).map(_ => uniform(Blue, Green))

Notice that the prior for the ball colors returns an
IndexedSeq[Rand[Color]] not a Rand[IndexedSeq[Color]]. Each
ball is represented by an integer from 0 until the number
of actual balls. Since we know a bound on the number of
actual balls, it is good enough and simpler to fix the length
of the sequence, rather than to parametrize the random pro-
cess generating the ball colors on the actual number of balls,
which is itself random.

Now, we define the process of drawing a ball from an urn.
The outcome of this process depends on the number of balls
and the color of the balls. We use the monadic bind to se-
quence inspections on random variables. This process re-
turns a random variable describing the index of the ball, its
color, and its observed color.

def draw(nballs: Rand[Int], ball_colors: IndexedSeq[Rand[Color]]) = {
for (n <- nballs;

b <- uniform(0 until n: _*);
c <- ball_colors(b);
o <- observed_color(c)) yield (b, c, o)

}

Finally, we can complete our model to answer the problem.
First, we want to know the random distribution of the num-
ber of balls that match a given sequence of observations:

def model_nballs(obs: IndexedSeq[Color]) = {
val nballs = nballs_prior()
val ball_colors = ball_colors_prior()
def matches_draw(obs_color: Color) =
for ((_, _, o) <- draw(nballs, ball_colors))
yield o == obs_color

nballs when forall(obs, matches_draw)
}

We can also answer the second question: “Were the balls
drawn twice?” by probabilistically calculating a map
drawn: Rand[Map[Int,Int]] from the ball’s index to the (posi-
tive) number of times it was drawn. We then calculate the
minimum value of this map – if it is 1, some ball was drawn
only once.

def model_duplicate(obs: IndexedSeq[Color]) = {
val nballs = nballs_prior()
val ball_colors = ball_colors_prior()
val drawn = obs.foldLeft(always(Map.empty[Int, Int])){
(map,obs_color) =>
for ((b, c, o) <- draw(nballs, ball_colors);

if o == obs_color;
m <- map)

yield m.updated(b, m.getOrElse(b, 0)+1)
}
drawn.map(_.values.min)

}

3.2 Running Models
All the code from the previous example is packaged in a

Scala trait, say ColoredBalls, to be mixed in with the trait
OddsLang provided by Odds.

2 4 6 8 10
0

0.2

0.4

n

p

Figure 1: Observing ten blue balls with importance
sampling: (1) plots the probability of n balls in
the urn; (2) plots the probability of at least n
duplicate draws for each ball drawn.

trait ColoredBalls extends OddsLang with OddsPrettyPrint {
// ... code from previous section here ...
val observations = (1 to 10).map(_ => Blue)
def ask1 = model_nballs(observations)
def ask2 = model_duplicate(observations)

}

We have also added some default queries for the observations
“10 blue balls”.

Now, we can run this model by mixing in a trait imple-
menting an inference strategy–for example, importance sam-
pling with look-ahead:

new ColoredBalls with LocalImportanceSampling {
show(normalize(sample(10000, 3)(ask1)), "ask1")
show(normalize(sample(20000, 3)(ask2)), "ask2")

}

The results are plotted in Figure 1.
In addition to importance sampling, Odds provides other

strategies for inferring the distribution of a model including
rejection sampling and exact inference. Pluggable inference
engines, with the same semantics, but different accuracies
and capabilities, compelled us towards an intuitive interpre-
tation of embedded probabilistic programs in symbiosis with
the host language.

3.3 Intuitive Semantics
Odds’ semantics matches that of Scala: a val of type

Rand[A] represents a random variable, which is perfectly cor-
related with itself on each read, while a def of return type
Rand[A] represents a random process, evaluated anew at each
invocation. In the colored balls model, we use both random
variables and processes, and seamlessly combine them with
deterministic Scala data structures. For example, we repre-
sent that balls have fixed colors by associating each ball with
a random variable Rand[Color]. Since random variables are
first-class values, we can keep this association in a regular
Scala data structure.

Probabilistic programs return random variables; they are
otherwise deterministic programs that make probabilistic
choices (such as flipping a coin) every now and then. Since
the result of these probabilistic choices may influence the
control flow of the program, the results of the different eval-
uations of the program may differ even for identical inputs.

Hence a probabilistic program can also be viewed as a gen-
erative processes for a certain probability distribution.

While, in general, some evaluations of a program might
not terminate, we will assume that the marginal probability
over all such evaluations, i.e. their total probability mass, is
zero. Probabilistic programs that terminate with probability
one are sometimes called admissible [6].

While we expect programs to terminate with probability
one, we do not require them to always return a result. An
evaluation that does not return a result is said to fail. This
is useful when designing programs that return conditioned
random variables, for example, if we want to refine a prob-
abilistic model in light of empirical observations. For exam-
ple, in the colored balls model, we used the when operator to
rule out scenarios that did not match the observed sequence
of colors. Internally, when uses a failing computation (em-
bodied by the never primitive) whenever its condition does
not hold:

def infix_when(x: => Rand[Boolean], y: Rand[Boolean]): Rand[A] =
y flatMap {
case true => x
case false => never

}

The notion of a probabilistic program as a process that re-
turns a random variable suggests a simple algorithm for ap-
proximating its distribution: we evaluate the program a cer-
tain number of times and build a histogram over the out-
comes of the individual runs. Failing runs are not counted
in the histogram. If we normalize the histogram by the total
number of successful runs, we expect the result to converge
to the desired distribution as the number of runs goes to
infinity. This method is generally known as rejection sam-
pling.

While rejection sampling is an inefficient approximation
method, it describes in an intuitive and precise manner the
generative process represented by a probabilistic program,
and we will therefore adopt it as a model for the operational
semantics of the latter. Alternate inference methods pre-
sented in this paper should of course converge to the same
distribution as that obtained by rejection sampling in the
limit but they will be chosen to also to preserve the oper-
ational behavior of rejection sampling in as far as it is ob-
servable from within a purely functional probabilistic com-
putation.

4. INSIDE ODDS
At the heart of this section, we explain our “committed

choice” model, which enables Odds to integrate probabilistic
monadic programming with the native evaluation order of
the host language. As stepping stones, we summarize Odds’
monadic interface and then review rejection sampling, and a
classical approach to implementing a probability monad. We
conclude this section by touring pluggable inference engines.

4.1 Odds API
The specification of an Odds program is separate from

its implementation. The type Rand[A] representing a random
variable of outcome of type A is kept as an abstract zero-plus
monad in the API, against which Odds programs are spec-
ified. The function choice is the primitive discrete random
process, yielding fresh random variables according to a given
distribution over values of some type A. Other discrete ran-
dom processes, including always (the monadic return) never

(the monadic zero) are defined in terms choice.

type Prob = Double
type Dist[+A] = Iterable[(A, Prob)]

type Rand[+A] <: RandIntf[A]

trait RandIntf[+A] {
def flatMap[B](f: A => Rand[B]): Rand[B]
def map[B](f: A => B): Rand[B] =

flatMap(x => always(f(x)))
}

def choice[A](xs: (A, Prob)*): Rand[A]

def always[A](x: A) = choice(x -> 1.0)
def never = choice()
def flip(p: Double): Rand[Boolean] =

choice(true -> p, false -> (1-p))
def uniform[A](xs: A*): Rand[A] =

choice(xs.map((_, 1.0 / xs.size)):_*)

In rejection sampling, the Rand[A] monad is conceptually just
the Option[A] monad representing a single concrete outcome
or a failure. The choice function simply samples the given
distribution. A probabilistic program is run many times to
get an approximate distribution of its outcomes.

4.2 A classical probability monad
We briefly describe a “classical” probability monad [16,

5, 3]. Conceptually, Rand[A] represents a random process
yielding an independent random variable at each monadic
bind. Thus, the whole program must be in monadic style to
correctly track dependencies between random variables.

type Rand[+A] = RandVar[A]
final case class RandVar[+A](dist: Dist[A])
extends RandIntf[A] {
def flatMap[B](f: A => Rand[B]): Rand[B] = RandVar(
for ((v, p) <- dist; (w, q) <- f(v).dist)
yield (w, q * p))

}

def choice[A](xs: (A, Prob)*): Rand[A] = RandVar(xs)
def reify[A](x: Rand[A]): Dist[A] = consolidate(x.dist)

The probability monad wraps the distribution associated
with a random variable X, and its monadic bind, the flatMap
method, computes functions on X by marginalizing over X
using the chain rule:

Pr{f(X) = y} =
∑
x

Pr{f(X) = y |X = x}Pr{X = x}

The reify function reifies a given random variable x, by re-
turning the distribution encapsulated by x. The consolidate
function sums the weights of equal outcomes.

4.3 Committed Choice
Committed choice (also known as call-time choice) re-

stores the intuitive semantics that Rand[A] represents a ran-
dom variable that is perfectly correlated with itself. The
term “itself” already indicates that we need to be able to
observe identities of random variables. The key idea is to as-
sign a unique ID to every probabilistic choice and to register
the history of choices made by a given program evaluation in
an environment addressed by choice IDs. Each choice may
split the program evaluation into multiple paths. Depending
on the inference strategy, several such paths may be followed
at the same time. In this case, each of them will maintain
a separate “thread local” environment to record choices as

they are committed.
In the construction of Rand[A] monad instances, we make

crucial use of side effects outside of the Rand monad to main-
tain a global counter as a source of unique IDs. Once monad
instances are created, all further monadic computation is
purely functional and free from side-effects.

Operations in a monad are sequenced through the
monadic bind operator. In our case, this means that the
evaluation order of a probabilistic program is determined by
the flatMap calls on its Rand instances. For our Rand monad
to work as expected, environments containing committed
choices need to be passed between Rand instances in evalua-
tion order, that is, from the receiver object of a particular
call to flatMap to its argument. To decouple the inference al-
gorithm from the monad representation, we use a delayed
evaluation approach, which allows us to explore possible
evaluation paths of a probabilistic program like a search tree
during inference. Inspired by the Hansei language [7], this
design enables traversals in different orders, and in a lazy
fashion, which is a prerequisite for supporting different in-
ference engines. In the more general context of Functional
Logic Programming (FLP), our Rand[T] monad thus repre-
sents a particular variant of weighted non-determinism with
call-time choice and implicit sharing [4], and fulfills the cor-
responding equational laws.

We define our extended probability monad as follows:

type Rand[+A] = RandVar[A]

sealed abstract class RandVar[+A] extends RandIntf[A] {
def flatMap[B](f: A => Rand[B]): Rand[B] =

RandVarFlatMap(this, f)
}
final case class RandVarChoice[+A](dist: Dist[A])
extends RandVar[A] with CommittedChoice[A]

final case class RandVarFlatMap[+A, B](
x: RandVar[B], f: B => Rand[A])
extends RandVar[A] with CommittedChoice[Rand[A]]

def choice[A](xs: (A, Prob)*): Rand[A] =
RandVarChoice(xs)

Our probability monad is an algebraic data type consisting
of application nodes for choice and flatMap. Calling either
one of these functions simply allocates a corresponding node.
The CommittedChoice trait mixed into the node classes pro-
vides a convenient interface for registering choices in an en-
vironment. While RandVarChoice nodes commit to particular
values of the underlying distribution, RandVarFlatMap nodes
commit to the result of applying the closure f to a particu-
lar choice of bound variable.

Exact Inference
We can then implement exact inference as follows:

type Environment = Map[Int, Any];

def explore[A, B](
x: RandVar[A], p: Prob, env: Environment)(
cont: (A, Prob, Environment) => Dist[B]): Dist[B] =
x match {
case x @ RandVarChoice(dist) =>
x.choice(env) match {
case Some(v) => cont(v, p, env)
case None => dist flatMap {
case (v, q) =>
x.withChoice(env, v) { e =>
cont(v, p * q, e)

}

}}
case t @ RandVarFlatMap(x, f) =>
explore(x, p, env) { (y, q, e) =>
t.choice(e) match {
case Some(r) => explore(r, q, e)(cont)
case None =>
val r = f(y)
t.withChoice(e, r) {
e1 => explore(r, q, e1)(cont)

}
}}}

def reify[A](x: RandVar[A]): Dist[A] =
consolidate(explore(x, 1, Map()) {
(y, p, e) => Iterable(y -> p)

})

The exact inference algorithm walks the Rand tree to reify the
probabilistic computation it represents, committing choices
as it traces a given evaluation history.

The core of the algorithm is the explore function which
reifies the application node at the top of a RandVar tree and
calls the continuation cont of the application with the con-
crete values of the resulting distribution. The choice and
withChoice methods are part of the CommittedChoice trait and
are used to look up and register choices in an environment.
Whenever explore encounters a node that represents a com-
mitted choice, it simply passes the committed value on to
its continuation cont, rather than recomputing it.

Delayed Evaluation
The delayed evaluation of RandVar trees has the added ben-
efit that random choices are delayed until the point where
the choice and commitment to a concrete value is actually
required rather than at the point of definition of a random
variable. This can result in a considerable reduction of the
number of histories that need to be explored to reify a ran-
dom computation. The following example adopted from [7]
illustrates this point:

// Flip ‘n‘ coins.
def flips(p: Prob, n: Int): List[Rand[Boolean]] =
n match {
case 0 => Nil
case n => flip(p) :: flips(p, n - 1)

}

// Check whether a list of coins are all ‘true‘.
def trues(cs: List[Rand[Boolean]]): Rand[Boolean] =
cs match {
case Nil => always(true)
case c :: cs => c && trues(cs)

}

val flips20 = reify(trues(flips(0.5, 20)))

If choice were to commit to choices eagerly, the above model
would result in a search tree with 220 leaves because ev-
ery possible combination of the 20 coin-tosses generated by
flips would be explored. Using delayed evaluation, the to-
tal number of choices to considered by our exact inference
algorithm reduces to 40, because the && operation in trues
short-circuits most evaluations.

4.4 Other Inference Strategies
Apart from rejection sampling and exact inference, Odds

provides two additional inference algorithms: depth-bounded
inference and importance sampling with look-ahead. Depth-
bounded inference can be used to shallowly explore the

search tree programs, while importance sampling with look-
ahead yields better approximations of the probability of un-
likely outcomes of programs.

Depth-bounded inference
As the name implies, depth-bounded inference is a technique
to traverse the search tree of a probabilistic program down
to a limited depth. This can be useful in order to explore the
subset of the distribution of a probabilistic program over its
most likely outcomes. The actual depth to which the search
tree is explored depends on the desired number of outcomes
in the resulting distribution, or on an upper bound on the
probability mass of the unexplored branches in the search
tree.

For example, consider the following definition of a proba-
bilistic list of coin tosses:

def randomList(): Rand[List[Boolean]] = flip(0.5) flatMap {
case false => always(Nil)
case true => for {
head <- flip(0.5)
tail <- randomList()

} yield head :: tail
}

The random lists returned by randomList can have any length,
but longer lists are less likely.

Given the above definition, we can infer the probability
that the concatenation of a random pair (x, y) of lists will
match a given, finite sequence – say (true, true, false):

def infix_++[T](
x: Rand[List[T]], y: Rand[List[T]]): Rand[List[T]] =
for (xv <- x; yv <- y) yield xv ++ yv

val x = randomList()
val y = randomList()
val xy = x ++ y
val p = (x, y) when (xy === always(List(true, true, false)))

It is easy to see that there are at most four such pairs. Yet,
our exact inference algorithm would attempt to compare ev-
ery value in the support of xy to our query sequence, immedi-
ately discarding all but four of them. Using depth-bounded
inference, we can instead ask for the exploration to stop once
the four solutions have been discovered:

scala> p.reify(4)
res4: (test.Dist[(List[Boolean], List[Boolean])], test.Prob) =
(Map((List(true), List(true, false)) -> 0.00390625,

(List(true, true), List(false)) -> 0.00390625,
(List(true, true, false), List()) -> 0.00390625,
(List(), List(true, true, false)) -> 0.00390625),
0.296875)

Importance sampling with look-ahead
An inherent problem of rejection sampling is that it will fa-
vor evaluations with high prior probabilities, even though
they might eventually fail. Since failing evaluations are not
counted as samples towards the final distribution, the re-
sulting approximation might be very poor even for a large
number of evaluations. Importance sampling [14, 7] aims to
circumvent this problem by excluding early failing evalua-
tions from the sampling procedure.

We implement importance sampling with look-ahead, a
variant of importance sampling introduced in [7]. Impor-
tance sampling with look-ahead combines rejection sampling
with depth-bounded inference. The sampler first explores
the search tree shallowly, collecting all the leaf nodes it en-

counters, and then picks one of the unexplored sub-trees at
random according to the probability of its root node. In this
way, early failing branches are excluded quickly.

Consider the following example adopted from [7]:

def drunkCoin(): Rand[Boolean] = {
val toss = flip(0.5)
val lost = flip(0.9)
lost flatMap {
case true => never
case false => toss

}
}

def dcoinAnd(n: Int): Rand[Boolean] = n match {
case 1 => drunkCoin()
case n => drunkCoin() && dcoinAnd(n - 1)

}

The drunkCoin process models a drunk person flipping a coin,
with the coin getting lost in the process nine out of ten
times. An experiment based on the outcome of ten coin
tosses will therefore require many more tosses overall. As a
consequence, the rejection sampler generally fails to observe
a single streak of ten tosses all coming up heads in as many
as 10000 samples:

scala> sample(10000)(dcoinAnd(10))
res0: DrunkCoinModel.Dist[Boolean] = Map(false -> 537.0)

However, using importance sampling with a look-ahead of
four, we can reliably approximate the correct distribution
(false -> 0.99999, true -> 1.85546e-12) to within 10−9 using
half the number of samples:

scala> normalize(sample(5000,4)(dcoinAnd(10)))
importance sampler: 5000 samples, 22492 solutions.
res7: DrunkCoinModel.Dist[Boolean] =
ArrayBuffer((false, 0.9999999999979218),

(true, 2.0781256234326196E-12))

5. EVALUATION
We evaluated Odds by modeling several non-trivial exam-

ples from the literature, notably Pfeffer’s music model [14],
and Milch et al.’s radar tracking of aircraft [11]. The source
code of these models is available online together with the
core Odds sources1. Since these examples also exist in Han-
sei2, they offer us a nice opportunity to compare both DSLs
from a user’s perspective.

Music model
Pfeffer’s music model studies the evolution of melodic mo-
tives in classical music. A melody is a sequence of notes, and
can evolve either by notes being removed, inserted, or trans-
formed according to a set of stochastic rules. The model then
seeks to understand the likelihood of a certain sequence be-
ing an evolution of another sequence.

Of programmatic interest in this example is the use of lazy
lists for modeling the evolution of a musical sequence. With
Odds, because Rand[A] is lazy in the sense that it is evalu-
ated only when reify is called (as explained in section 4.3),
using normal Scala lists works. We implemented the model
both with Rand[List] and a custom lazy list implementation.
The custom lazy lists have the advantage of short-circuiting
computation at the level of the Rand monad itself, i.e. before

1https://github.com/sstucki/odds/
2http://okmij.org/ftp/kakuritu/

reification. This can potentially reduce the search space to
be explored during reification.

Aircraft
The aircraft example is a more complex version of the balls
example presented in the section 3. Instead of balls of differ-
ent colors, we have airplanes on an observable grid, which
change position according to stochastic rules. To observe
them, the equivalent of drawing balls is an imperfect radar
system. The system triggers alarms with a certain proba-
bility when it detects a plane; multiple planes in the same
region trigger a single blip, and false alarms can also be
triggered. This model investigates how many planes a grid
contains, given a certain number of blips. Further complex-
ity can be added to the system by modeling entrance and
departure of airplanes from the grid.

In this example, we use classes to model plane states and
plane co-ordinates, and operate on their stochastic versions.

Experience report
Developing both the above models gives us some insight into
how intuitive it is to use Odds. The fact that both models
are based on existing implementations in Hansei also allows
us to compare and contrast the two languages.

On the one hand, the Odds programs allow programmers
to rely on regular Scala facilities like val and def to control
evaluation order and sharing. Having a type Rand[T] to rep-
resent random variables is another advantage: it is easier
to focus on the ”domain-specific” aspects of developing the
models once the basic elements of the model are defined as
random variables. The actual implementation of the mod-
els then consists mainly in using monadic combinators on
Rand[T] as well as the usual library operations on determin-
istic data structures in Scala. The Scala type checker helps
in detecting improper use of random variables in determin-
istic contexts quickly.

Hansei, on the other hand, does not distinguish between
probabilistic and deterministic computations, and hence
random variables do in general not require special typing. In
practice, however, random variables are often distinguished
through constructs like letlazy; as mentioned in section 2,
this is an optimization for pruning the search tree. The op-
timization is essential for operating with realistic examples.
While this can be converted into a rule of thumb, our ex-
perience suggests that letting Odds’ semantics and Scala’s
type system take care of evaluation is more intuitive for a
non-experienced user.

A common difficulty we experienced was the need to man-
age the lifting of structures to their stochastic representa-
tion. For example, it is intuitive to represent the state of a
plane in the aircraft example using case classes in Scala:

case class PlaneState(idx: Int, p: (Int,Int), dir: Dir)

As the state of a plane evolves stochastically, we need to
operate over Rand[PlaneState], such that the fields of the state
are random variables themselves. We are therefore required
to write quite a bit of boilerplate code around PlaneState in
order to use it with random variables. In Hansei, lazy data
structures are necessary to improve performance.

If constructs such as letlazy are not needed, Hansei’s very
shallow embedding without type-level distinction between
Rand[Int] and Int feels very seamless, whereas Odds requires
programmers to either use explicit monadic style or to imple-

ment lifted versions of the corresponding operations (a task
which might be simplified with macros). These observations
mirror the expected trade-offs identified in Section 2. In
addition, we can take advantage of Scala’s implicit conver-
sions for automatically lifting data structures into the Rand
monad, thereby making their integration with the language
more seamless to the user. We have defined such conver-
sions for tuples (as seen in the example in section 3) and the
same technique can readily be applied to other data struc-
tures. Hence this remains an engineering issue rather than
a technical one. For the development of large-scale mod-
els, both languages could profit from a standard library of
ready-to-use, special-purpose data structures, optimized for
probabilistic programming.

Appealing to the “principle of least surprise”, we believe
the proper placement of operators to control evaluation or-
der and memoization is inherently more difficult than fol-
lowing the guidance of the type system and switching to
monadic style were needed.

Internally, Odds uses inference algorithms inspired by
Hansei and achieves comparable performance. Since the
more advanced inference modules in Odds are still under-
going active developed, we refrain from a more rigorous per-
formance comparison here.

6. EXTENSIONS
We have shown in the preceding section that Odds can

express relevant probabilistic programs from the literature.
But we can also use the core Odds primitives to build even
higher level abstractions. We give one example based on
Scala-Virtualized [17]: using virtualized pattern matching,
which redefines pattern match expressions as operations on
a user-defined zero-plus monad, we can implement a rule-
based probabilistic logic programming system. We omit
some details here and refer to [17] for a more thorough treat-
ment.

Using the Odds monad as the base for pattern match-
ing expressions, we define a probabilistic extractor Rule that
wraps a given random process:

implicit class Rule(f: String => Rand[String]) {
def unapply(x: String): Rand[String] = f(x)

}

We continue by defining some actual probabilistic rules, as-
suming an implicit lifting from String to Rand[String] values:

val Likes: Rule = { x: String => x match {
case "A" => "Coffee"
case "B" => "Coffee"
case "D" => "Coffee"
case "D" => "Coffee" // likes coffee very much!
case "E" => "Coffee"

}}
val Friend: Rule = { x: String => x match {
case "A" => "C"
case "A" => "C" // are really good friends!
case "C" => "D"
case "B" => "D"
case "A" => "E"

}}

Since pattern matching is probabilistic, it may explore mul-
tiple branches. For example, “A” occurs three times on the
left-hand side in rule Friend. Repeating a case like “A”,“C”
will double its probability. Rules can also be recursive, which
is required e.g. to define reflexive transitive closures:

val Knows: Rule = { x: String => x match {
case Friend(Knows(y)) => y
case x => x

}}

In general, rules compose in an intuitive way:

val ShouldGrabCoffee: Rule = { x: String => x match {
case Likes("Coffee") && Knows(y @ Likes("Coffee")) if x != y =>
x + " and " + y + " should grab coffee"

}}

This definition can be almost read out loud: if x likes coffee,
and x knows someone else, y, who also likes coffee, then they
should grab coffee together.

Evaluating this model yields a weighted list of coffee
matchings:

A and D should grab coffee : 0.5714285714285714
B and D should grab coffee : 0.2857142857142857
A and E should grab coffee : 0.14285714285714285

In general, the computed weights correspond to relative fre-
quencies and can be interpreted in an application-specific
way.

7. RELATED WORK
Our work is very closely related to other functional ap-

proaches to probabilistic programming. Hansei [7] is a
domain-specific language embedded in OCaml, which al-
lows one to express discrete-distribution models with po-
tentially infinite support, perform exact inference as well
as importance sampling with look-ahead, and probabilis-
tic reasoning about inference. Unlike Odds, Hansei does
not distinguish between probabilistic and deterministic com-
putations using types. Instead, Hansei uses a very shal-
low embedding, and implements probabilistic effects in di-
rect style using delimited continuations. Church [6] is a
universal probabilistic programming language, extending
Scheme with probabilistic semantics, and is well suited
for describing infinite-dimensional stochastic processes and
other recursively-defined generative processes. Unlike Odds,
Church is a dynamically-typed, standalone language.

Figaro [15] is another language embedded in Scala but
takes an object-oriented approach: it is a library for con-
structing probabilistic models that also provides a num-
ber of built-in inference algorithms that can be applied di-
rectly to constructed models. Like Odds, Figaro uses a spe-
cial type Element[T] to distinguish probabilistic computations
with support type T. The Element type forms a probabil-
ity monad similar to the Rand type in Odds, and both lan-
guages use Scala’s built-in variable binding mechanism and
hence track committed choices. However, Figaro programs
are represented and built explicitly as data structures, that
is, instances of appropriate subclasses of Element, such as
Flip, Apply, If, etc. This allows a programmer to manip-
ulate Figaro programs in Scala and to define custom sub-
classes of Element by overriding appropriate methods. In
contrast, Odds programs are constructed implicitly through
probabilistic operations like always or choice, for comprehen-
sions, or operations on deterministic types that have been
lifted into the Rand domain. The Rand type remains abstract
in Odds programs until a particular inference algorithm is
mixed in, and hence the programmer can not implement cus-
tom subclasses of Rand. Similarly, Figaro stores choices for
its elements directly in the corresponding Element instance,
while Odds only stores variable IDs in Rand instances and uses

separate per-branch environments to keep track of choices
during inference. These differences are not accidental, they
illustrate the different focus of the two languages: Odds aims
to abstract implementation details as much as possible from
probabilistic programs, while Figaro gives programmers con-
trol over the structures underlying a probabilistic program.
Figaro also allows conditions and constraints to be defined
for any element, which, among other things, allows the defi-
nition of cyclic models. Currently, no such mechanism exists
in Odds.

A logic-programming based approach is taken by
ProbLog, which is a probabilistic extension of Prolog based
on Sato’s distribution semantics [20]. While ProbLog1 fo-
cuses on calculating the success probability of a query,
ProbLog2 can calculate both conditional probabilities and
MPE states. BLOG [11], or Bayesian logic, is a probabilistic
programming language with elements of first-order logic, as
well as an MCMC-based inference algorithm. BLOG makes
it relatively easy to represent uncertainty about the number
of underlying objects explaining observed data.

BUGS is a language for specifying finite graphical mod-
els and accompanying software for performing B(ayesian)
I(nference) U(sing) G(ibbs) S(ampling)[9].

There exist also many software libraries and toolkits for
building probabilistic models [10, 13, 1].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented Odds, a small embedded

(DSL) that provides first-class support for random variables
and probabilistic choice. Odds programs can re-uses Scala’s
abstraction and modularity facilities for composing proba-
bilistic computations, and the probabilistic semantics match
that of Scala in an intuitive way. As part of the imple-
mentation, we have presented a novel probabilistic monad
that accurately represents possibly dependent random vari-
ables by modeling committed choice. We have combined
this monadic representation with a range of inference pro-
cedures, including exact inference, rejection sampling and
importance sampling with look-ahead, and we have imple-
mented several non-trivial probabilistic programs.

As part of our future work, we first of all aim to add
better off-the-shelf support for lazy lists and lifting of struc-
tures to the stochastic world. We also want to explore using
Lightweight Modular Staging (LMS) [18] to remove interpre-
tive overhead in the inference algorithms by compiling infer-
ence procedures down to low-level code. We also want to use
the Delite framework [2, 19, 8] to parallelize inference and
run it on heterogenenous hardware like GPUs. In addition,
we would like to explore synergies with OptiML [21], a ma-
chine learning DSL built on top of Delite. There is also more
work to be done on implementing further inference proce-
dures such as Markov-Chain Monte-Carlo (MCMC) solvers
[12].

9. ACKNOWLEDGMENTS
The authors would like to thank Chung-chieh Shan, Oleg

Kiselyov and the anonymous reviewers for their valuable
feedback.

10. REFERENCES
[1] PyMC: Bayesian inference in Python. Online, 2012.

[2] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun. A heterogeneous parallel
framework for domain-specific languages. PACT, 2011.

[3] M. Erwig and S. Kollmansberger. Functional pearls:
Probabilistic functional programming in haskell. J. Funct.
Program., 16(1):21–34, 2006.

[4] S. Fischer, O. Kiselyov, and C.-c. Shan. Purely functional
lazy non-deterministic programming. In Proceedings of the
14th ACM SIGPLAN international conference on
Functional programming, ICFP ’09, pages 11–22, New
York, NY, USA, 2009. ACM.

[5] J. Gibbons. Unifying theories of programming with
monads. In Unifying Theories of Programming, volume
7681, pages 23–67. Springer, 2013.

[6] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum. Church: a language for
generative models. In Proc. of Uncertainty in Artificial
Intelligence, 2008.

[7] O. Kiselyov and C.-c. Shan. Embedded probabilistic
programming. In W. M. Taha, editor, Domain-Specific
Languages, volume 5658 of Lecture Notes in Computer
Science, pages 360–384. Springer, 2009.

[8] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf,
M. Odersky, and K. Olukotun. Implementing
domain-specific languages for heterogeneous parallel
computing. IEEE Micro, 31(5):42–53, 2011.

[9] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter.
WinBUGS - A Bayesian modelling framework: Concepts,
structure, and extensibility. Statistics and Computing,
10(4):325–337, Oct. 2000.

[10] A. McCallum, K. Schultz, and S. Singh. Factorie:
Probabilistic programming via imperatively defined factor
graphs. In Adv. in Neural Inform. Processing Syst.,
volume 22, 2009.

[11] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and
A. Kolobov. BLOG: Probabilistic models with unknown
objects. In L. Getoor and B. Taskar, editors, Statistical
Relational Learning. MIT Press, 2007.

[12] B. Milch and S. Russell. General-purpose MCMC inference
over relational structures. In Proc. 22nd Conference on
Uncertainty in Artificial Intelligence, pages 349–358, 2006.

[13] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET
2.5, 2012. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[14] A. Pfeffer. A general importance sampling algorithm for
probabilistic programs. Tech. Rep. TR-12-07. Technical
report, Harvard University, 2009.

[15] A. Pfeffer. Creating and manipulating probabilistic
programs in figaro. UAI Workshop on Statistical Relational
AI (StarAI), 2012.

[16] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and
monads of probability distributions. Proc. of the 29th ACM
SIGPLAN-SIGACT Symp. on Principles of Program.
Lang., pages 154–165, 2002.

[17] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky.
Scala-virtualized: Linguistic reuse for deep embeddings. In
Higher-Order and Symbolic Computation (Special issue for
PEPM’12, to appear).

[18] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and
compiled dsls. Commun. ACM, 55(6):121–130, 2012.

[19] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi,
M. Odersky, and K. Olukotun. Building-blocks for
performance oriented DSLs. DSL, 2011.

[20] T. Sato. Generative modeling by prism. In ICLP, pages
24–35, 2009.

[21] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu,
A. R. Atreya, M. Odersky, and K. Olukotun. OptiML: an
implicitly parallel domain-specific language for machine
learning. In Proceedings of the 28th International
Conference on Machine Learning, ICML, 2011.

