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Abstract
High level data structures are a cornerstone of modern program-
ming and at the same time stand in the way of compiler optimiza-
tions. In order to reason about user or library-defined data struc-
tures, compilers need to be extensible. Common mechanisms to
extend compilers fall into two categories. Frontend macros, stag-
ing or partial evaluation systems can be used to programmatically
remove abstraction and specialize programs before they enter the
compiler. Alternatively, some compilers allow extending the in-
ternal workings by adding new transformation passes at different
points in the compile chain or adding new intermediate represen-
tation (IR) types. None of these mechanisms alone is sufficient to
handle the challenges posed by high level data structures. This pa-
per shows a novel way to combine them to yield benefits that are
greater than the sum of the parts.

Instead of using staging merely as a front end, we implement in-
ternal compiler passes using staging as well. These internal passes
delegate back to program execution to construct the transformed
IR. Staging is known to simplify program generation, and in the
same way it can simplify program transformation. Defining a trans-
formation as a staged IR interpreter is simpler than implementing a
low-level IR to IR transformer. With custom IR nodes, many opti-
mizations that are expressed as rewritings from IR nodes to staged
program fragments can be combined into a single pass, mitigating
phase ordering problems. Speculative rewriting can preserve opti-
mistic assumptions around loops.

We demonstrate several powerful program optimizations using
this architecture that are particularly geared towards data structures:
a novel loop fusion and deforestation algorithm, array of struct to
struct of array conversion, object flattening and code generation
for heterogeneous parallel devices. We validate our approach using
several non trivial case studies that exhibit order of magnitude
speedups in experiments.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code generation, Optimization, Run-time
environments; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming – Parallel programming

General Terms Design, Languages, Performance

Keywords Staging, Code Generation, Data Structures, Extensible
Compilers
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// Vectors
object Vector {
def fromArray[T:Numeric](a: Array[T]) =
new Vector { val data = a }

def zeros[T:Numeric](n: Int) =
Vector.fromArray(Array.fill(n)(i => zero[T]))

}
abstract class Vector[T:Numeric] {
val data: Array[T]
def +(that: Vector[T]) =
Vector.fromArray(data.zipWith(that.data)(_ + _)) ...

}
// Matrices
abstract class Matrix[T:Numeric] { ... }
// Complex Numbers
case class Complex(re: Double, im: Double) {
def +(that: Complex) = Complex(re + that.re, im + that.im)
def *(that: Complex) = ...

}
// (elided Numeric[Complex] type class implementation)

Figure 1. Skeleton of a high-level Scala linear algebra package

1. Introduction
Compiling high-level programs to efficient low-level code is hard,
particularly because such programs use and define high-level ab-
stractions. The compiler cannot see through abstractions (“abstrac-
tion penalty”), and it cannot reason about domain-specific prop-
erties (“general purpose bottleneck”). Among the most important
abstractions are data structure and collection operations, and those
also commonly present the most difficulties to an optimizing com-
piler.

Let us consider an example of high level programming in Scala.
We would like to implement a dense linear algebra package. Fig-
ure 1 shows a skeleton implementation of Vectors and Matrices as a
thin layer over Arrays, using high-level collection operations (fill,
zipWith) internally. Vectors and Matrices contain numeric values
(type class Numeric). We also define Complex numbers as a new
numeric type.

With these definitions at hand, we can write programs like the
following:
def diag(k:Int) = k * Matrix.identity(n)
val m1 = (v1+v2).transpose * (v1+v2)
val m2 = diag(l)
if (scale) println(m1*m2) // == m1*(k*id) == k*m1*id == k*m1
else println(m1) // no need to compute m2

This code is elegant and high level, demonstrating how Scala’s fo-
cus on abstraction and generalization increases development pro-
ductivity. But unfortunately the code will run very slowly, one or
two orders of magnitude slower than a tuned low-level implemen-
tation using just arrays and while loops (see Section 5).

What exactly is going wrong? Some of the reasons are:



1. Neither the Scala compiler nor the just-in-time compiler inside
the JVM can apply generic optimizations, like common subex-
pression or dead code elimination (CSE, DCE), to non-trivial
matrix or vector computations.

2. The involved compilers have no notion of domain-specific laws
like m*id=m (where m is a matrix and id the identity matrix),
which could be used for optimization.

3. Programming in a functional programming style creates lots of
intermediate objects.

4. The uniform heap-allocated object representation on the JVM
is inefficient for complex numbers.

In order to enable a compiler to reason about programs with
high-level abstractions, we need mechanisms to extend the com-
piler so that it is able to resolve those abstractions. There are two
common approaches. The first is to translate the abstractions away
before the program reaches the compiler proper, so that the com-
piler does not need to be aware of them. This is the idea behind
macro systems and staging. Partial evaluation (PE) can also be used
to specialize programs before they reach the actual compiler. The
second option is to teach the compiler new domain-specific rules.
Usually, compiler extensibility is understood as a means to add new
phases. Some extensible compilers also allow adding new IR types
but often it is not clear how new nodes interact with existing generic
optimizations.

However, neither of these approaches alone is sufficient to han-
dle the challenges posed by high-level data structures and abstrac-
tions. Going back to our example, if all we have is staging or
macros, then the expression m*id, which is equivalent to m, will
be expanded into while loops before it even reaches the compiler,
so no simplification to m can take place. In general, limited forms
of simplification can be added (see C++ expression templates [51])
but to be fully effective, the full range of generic compiler optimiza-
tions (CSE, constant propagation, etc) would need to be duplicated,
too. If on the other hand all we have is a facility to add new compiler
passes, then we can add an optimization pass that simplifies m*id
to m, but we need another pass that expands matrix multiplications
into loops. These passes need to be implemented as low-level IR
to IR transformations, which is much more difficult than the macro
or staging approach that can use regular (multi-stage) computation
to express the desired target code. Implementing optimizations as
separate passes also leads to phase ordering problems if multiple
optimizations are added independently.

We argue that what we really want is the best of both worlds: On
the one hand, we want to treat operations symbolically so that they
can be matched by transformation rules. But on the other hand we
also want the power of staging to programmatically define the result
of a transformation. In addition to that, we need a way to define
transformations independently but avoid phase ordering problems
when optimizations are applied.

Contributions In this paper, we present an extensible compiler
architecture that solves this challenge, while still keeping the pro-
gramming effort required to express optimizations and transforma-
tions low. Our approach achieves large speedups on high-level pro-
grams by fusing collection operations, changing data layout and
applying further optimizations on high-level objects, enabled by
intermediate languages with staging and a facility to combine inde-
pendently specified optimizations without phase ordering issues.

To illustrate at a high level how our system works, consider
again the linear algebra case. We use staging to obtain an inter-
mediate representation from the initial program. In order to avoid
the problems of the pure staging or macro approach, we apply op-
timizations at different levels, and we combine as many optimiza-
tions as possible together in a single pass to avoid many of the
traditional phase-ordering problems. Linear algebra optimizations

are implemented by the library author as rewrite rules that rewrite
symbolic expressions into staged program fragments. The system
applies rewriting speculatively using optimistic assumptions and
rolls back intermediate transformations when they later turn out to
be unsound. This strategy eliminates phase ordering problems that
are due to one optimization module having to make pessimistic as-
sumptions about the outcome of another one. Once no further sim-
plification is possible on the linear algebra level, we want to switch
to a lower level representation which consists of arrays and loops.
We implement this kind of ‘lowering’ transform as a staged inter-
preter over the intermediate program. Since the interpreter again
uses staging, it constructs a new program and thus acts as a pro-
gram transformer. By default, this interpreter maps each expres-
sion to a structurally equivalent one. The library author extends it
to map linear algebra operations to their lower level representation.
On this lower level, the system applies another set of optimizations
(e.g. loop fusion) in a combined pass, re-applying global optimiza-
tions to take advantage of new opportunities exposed by changing
the representation. This process can be repeated for any desired
number of lowering steps.

In particular, we make the following contributions:

• We use staging to build extensible multi-pass compilers that
can also profitably combine modular optimizations into single
passes: Staged IR interpreters act as IR transformers and spec-
ulative rewriting allows combining independently specified op-
timization while keeping optimistic assumptions.
• We use a graph-based intermediate representation that may con-

tain structured, compound expressions. Splitting and merging
compound expressions allows reusing existing optimization on
their pieces (e.g. DCE to remove unused parts of a data struc-
ture). This approach extends to powerful data format conver-
sions (e.g. array-of-struct to struct-of-array).
• We present a novel data parallel loop fusion algorithm that uni-

formly handles horizontal and vertical fusion and also includes
asymmetric traversals (flatMap, groupBy).
• We demonstrate how this compiler architecture can solve tough

optimization problems related to data structures in a number of
nontrivial case studies.

We build on our previous work on Lightweight Modular Staging
(LMS) [39] and highlight similarities and differences to previous
work as we go along. The speculative rewriting approach is based
on earlier work by Lerner, Grove and Chambers [29].

Organization We start out by reviewing partial evaluation and
staging (§2). Insights from this section will help understand how
we use staging for program transformation (§3), where we first
present symbolic optimizations using speculative rewriting (§3.2)
before delving into lowering passes as staged IR interpreters (§3.3).
A third transformation we explore is the splitting and merging of
compound expressions to reuse existing optimizations (§3.4). We
then present how these techniques can be used to perform data
structure optimizations (§4): our generic staged struct abstraction
(§4.1), which extends to unions and inheritance (§4.2), an array of
struct to struct of array transform (§4.3), and loop fusion (§4.4).
We then present a set of case studies where our transformations are
particularly appealing (§5): linear algebra (§5.1), regular expres-
sion matching (§5.2), collection and query operations (§5.3), and
string templating (§5.4). Finally we discuss our results (§6), review
related work (§6.1) and conclude (§6.2).

2. Background
Many computations can naturally be separated into stages distin-
guished by frequency of execution or availability of information.
Multi-stage programming (MSP, staging for short) as established



by Taha and Sheard [46] make the stages explicit and allows pro-
grammers to delay evaluation of a program expression to a later
stage (thus, staging an expression). The present stage effectively
acts as a code generator that, when run, produces the program of
the next stage.

Staging is closely related to partial evaluation [20], which spe-
cializes programs to statically known parts of their input. For the
purpose of this paper, we can treat partial evaluation (and in partic-
ular binding-time analysis (BTA)) as automatic staging and staging
as programmer-controlled partial evaluation.

A key difference is that partial evaluation strictly specializes
programs and usually comes with soundness guarantees whereas
adding staging annotations to a program in an MSP language such
as MetaOCaml [7] provides more freedom for composing staged
fragments but requires some care so as not to change the computed
result.

Much of the research on staging and partial evaluation was
driven by the desire to simplify compiler development. For exam-
ple, specializing an interpreter to a particular program yields a com-
piled program with the interpreter overhead removed (the first Fu-
tamura projection [15]). Self applicable partial evaluators can gen-
erate compilers from interpreters and compiler generators.

The exposition in this paper uses Scala and Lightweight Modu-
lar Staging (LMS) [39], a library-only staging approach. Contrary
to dedicated MSP languages based on quasi quotation, LMS uses
only types to distinguish the computational stages. Expressions be-
longing to the second stage have type Rep[T] in the first stage when
yielding a computation of type T in the second stage. Expressions
of a plain type T will be evaluated in the first stage and become
constants in stage two. The plain Scala type system propagates in-
formation about which expressions are staged and thus performs a
semi-automatic local BTA. Thus, LMS shares some of the benefits
of automatic PE and manual staging.

Example: Zero-Overhead Traversal Abstractions Arrays in
Scala are bare JVM arrays which need to be traversed using while
loops and indices. The Scala standard library provides an enrich-
ment that adds a foreach method:
array foreach { i => println(i) }

Adding foreach is achieved using an implicit conversion:
implicit def enrichArray[T](a: Array[T]) = new {
def foreach(f: T => Unit): Unit =
{ var i = 0; while (i < a.length) { f(a(i)); i += 1 } }

}

This implementation has non-negligible abstraction overhead
(closure allocation, interference with JVM inlining, etc). We would
like to tell the compiler, whenever it sees a foreach invocation, to
just put the while loop there instead. This is a simple case where
macros or staging can help.

Using LMS, we just change the method argument types. Fig-
ure 2 shows a set of staged array and vector operations. The LMS
framework provides overloaded variants of many operations that
lift those operations to work on Rep types, i.e. staged expressions
rather than actual data.

It is important to note the difference between types Rep[A=>B]
(a staged function object) and Rep[A]=>Rep[B] (a function on staged
values). By using the latter, foreach ensures that the function pa-
rameter is always evaluated and unfolded at staging time. Macro
systems that only allow lifting expression trees support only types
Rep[A=>B]. This limits expressiveness and there are no guarantees
that higher order functions are evaluated at staging time.

In addition to the LMS framework, we use the Scala-Virtualized
compiler [32] which redefines several core language features as
method calls and thus makes them overloadable as well. For ex-
ample, the code

// Array
implicit def enrichArray[T](a: Rep[Array[T]]) = new {
def foreach(f: Rep[T] => Rep[Unit]): Rep[Unit] =
{ var i = 0; while (i < a.length) { f(a(i)); i += 1 } }

def zipWith(b: Rep[Array[T]])(f: (Rep[T],Rep[T]) => Rep[T]) =
Array.fill(a.length min b.length) { i => f(a(i), b(i)) }

}
// Vector
trait Vector[T] extends Struct { val data: Array[T] }
implicit def enrichVector[T:Numeric](a: Rep[Vector[T]]) = new {
def +(b: Rep[Vector[T]]) =
Vector.fromArray(a.data.zipWith(b.data)(_ + _)) ...

}
// (companion objects define Array.fill and Vector.fromArray)

Figure 2. Staged Array and Vector Ops.

var i = 0; while (i < n) { i = i + 1 }

will be desugared as follows:
val i = __newVar(0); __while(i < n, { __assign(i, i + 1) })

Methods __newVar, __assign, __while are overloaded to work on
Rep types. These methods need to be suitably defined and made
available in scope. Scala-Virtualized also provides overloaded field
access and object construction methods. In the declaration of vec-
tors or complex numbers, extending Struct serves as a marker to
automatically lift object construction and field accesses to the do-
main of Rep types. This means that staged field accesses such as
v.data are transparently available on Rep[Vector[T]] values and (in
this case) would return Rep[Array[T]] values. Similarly,
new Vector { val data = /* type Rep[Array[T]] */ }

will return a Rep[Vector[T]] object.

Generic Programming with Type Classes Figure 2 uses the type
class Numeric to abstract over particular numeric types. The type
class pattern [55], which decouples data objects from generic dis-
patch fits naturally with a staged programming model. We can de-
fine a staged variant of the standard Numeric type class and, with ad-
dition on numeric vectors defined in Figure 2, make vectors them-
selves instance of Numeric:
class Numeric[T] { def num_plus[T](a:Rep[T],b:Rep[T]): Rep[T] }
implicit def vecIsNumeric[T:Numeric] = new Numeric[Vector[T]] {
def num_plus(a: Rep[Vector[T], b: Rep[Vector[T]) = a + b

}

This allows us to pass, say, a staged Vector[Int] to any function
that works over generic types T:Numeric, such as vector addition
itself. The same holds for Vector[Vector[Int]]. Without staging,
type classes are implemented by passing an implicit dictionary, the
type class instance, to generic functions. Here, type classes are a
purely stage-time concept. All generic code is specialized to the
concrete types and no type class instances exist (and hence no
virtual dispatch occurs) when the staged program is run.

Maintaining Evaluation Order Compared to staging or macro
systems based on quasi quotation, LMS preserves program seman-
tics in more cases. In particular, adding Rep types does not change
the relative evaluation order of statements within a stage. In
compute() foreach { i => println(i) }

the staged foreach implementation from Figure 2 will evaluate
compute() only once, whereas purely syntactic expansion would
produce this target code:
while (i < compute().length) { println(compute()(i)); i += 1 }

LMS performs on-the fly ANF conversion, similar to earlier work
on PE with effects [49]. Systems based on quasi quotation could
profitably use the same method to maintain evaluation order but we
are unaware of any sustem that does. Instead, most other systems
leave it up to the programmer to insert let-bindings in the right
places, which can easily lead to subtle errors.



Limitations of Front-End Staging and Macros Despite the
given benefits, for top performance it is often not sufficient to use
staging (or macros, or partial evaluation) as a front end. Let us
consider a simple yet non-trivial example:
val v1 = ...
v1 + Vector.zeros(n)

Staging will replace the zero vector creation and the subsequent ad-
dition with arrays and loops. What we would like instead, however,
is to apply a symbolic simplification rule v+zero->v to remove the
zero addition before expansion takes place.

Let us imagine that our system would allow us to implement
the vector plus operation in such a way that it can inspect its
arguments to look for invocations of Vector.zeros. This would
cover the simple case above but we would still run into problems if
we complicate the use case slightly:
val v1 = ...
val v2 = Vector.zeros(n)
v1 + v2

To handle programs like this, it is not sufficient to just inspect
the (syntactic) arguments. We need to integrate the staging expan-
sion with some form of forward data flow propagation, otherwise
the argument to plus is just an identifier.

The deeper problem is that we are forced to commit to a single
data representation. Even if we combine staging with an extensible
compiler we need to make a decision: Should we treat vectors as
symbolic entities with algebraic laws, implemented as IR nodes
amenable to optimization? Or should we stage them so that the
compiler sees just loops and arrays without abstraction overhead?

The following sections will discuss mechanisms to integrate
these approaches and for treating data structures in a more abstract
way.

3. Program Transformation via Staging
Staging usually is a method for generating programs: A multi-
stage program builds an object program which is then compiled
normally again. We show that staging is also useful as a tool for
transforming programs. Any transformation can be broken down
into a traversal and a generation part. Not surprisingly, staging
helps with the generation part. In our case, internal compiler passes
are IR interpreters that happen to be staged so that they return a new
program as the result. This way they can delegate back to program
execution to build the result of a program transformation.

Staging for program transformation has a number of benefits.
First, building a (staged) IR interpreter is far simpler than building
a non-trivial IR to IR transformer. Second, optimizations can be
added gradually to a staged program, starting, e.g., with the code
from Figure 2. Third, the program (or library) itself is in control of
the translation and can influence what kind of code is generated.

One of the key aspects of our approach is to distinguish two
kinds of transforms: Optimizations and Lowerings. Lowerings
translate programs into a lower-level representation (e.g. linear
algebra operations into arrays and loops). Lowerings have a natu-
ral ordering so they can be profitably arranged in separate passes.
Optimizations, by contrast, have no clear ordering and are prone to
phase ordering problems. Thus, they need to be combined for max-
imum effectiveness. Also, most lowerings are mandatory whereas
optimizations are usually optional. Of course the distinction is not
always clear cut but many transforms fall into only one of the cate-
gories. In any case, it is important that all applicable optimizations
are applied exhaustively before lowering takes place. Otherwise,
high-level optimization opportunities may be missed. After a low-
ering step, there may be new opportunities for optimization. Thus,
our system performs a sequence of optimization, lowering, opti-
mization steps, until the lowest-level representation is reached. The
final representation is unparsed to target code.

We recap the LMS extensible IR (§3.1) and first consider opti-
mizations (§3.2), then lowerings (§3.3). Afterwards we descibe the
treatment of compound expressions (§3.4).

3.1 The LMS Extensible Graph IR
We now turn to the level of ‘primitive’ staged operations. Using
LMS we do not directly produce the second stage program in
source form but instead as an extensible intermediate representation
(IR). We refer the reader to our previous work for details on the
IR [37–39, 41] but give a short recap here. The overall structure is
that of a “sea of nodes” dependency graph [9].

In Figure 3, which will be the running example for this sec-
tion, we recast the vector implementation from Figure 2 in terms
of custom IR nodes. The user-facing interface is defined in trait
Vectors, with abstract methods (vec_zeros, vec_plus) that are im-
plemented in trait VectorsExp to create IR nodes of type VectorZeros
and VectorPlus, respectively.

The framework provides IR base classes via trait BaseExp, mixed
into VectorsExp (but not Vectors, to keep the IR hidden from user
code). Expressions are atomic:
abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

Trait BaseExp defines Rep[T]=Exp[T], whereas Rep[T] is left as an
abstract type in trait Base.

Custom (composite) IR nodes extend Def[T]. They refer to other
IR nodes only via symbols. There is also a type Block[T] to de-
fine nested blocks (not used in Figure 3). Taking a closer look at
vec_zero reveals that its expected return type is Exp[T] but the re-
sult value is of type Def[T]. This conversion is achieved implicitly
by toAtom:
implicit def toAtom[T](d: Def[T]): Exp[T] = reflectPure(d)

Method reflectPuremaintains the correct evaluation order by bind-
ing the argument d to a fresh symbol (on the fly ANF conversion).
def reflectPure[T](d: Def[T]): Sym[T]
def reifyBlock[T](b: =>Exp[T]): Block[T]

The counterpart reifyBlock (note the by-name argument) captures
performed statements into a block object. Additional reflect meth-
ods exist to mark IR nodes with various kinds of side effects (see
[41] for details).

3.2 Combining Optimizations: Speculative Rewriting
Many optimizations that are traditionally implemented using an it-
erative dataflow analysis followed by a transformation pass can also
be expressed using various flavors of (possibly context dependent)
rewriting. Whenever possible we tend to prefer a rewriting variant
because rewrite rules are easy to specify separately and do not re-
quire programmers to define abstract interpretation lattices.

Rewrites and Smart Constructors LMS performs forward op-
timizations eagerly while constructing the IR. Hash-consing im-
plements CSE and smart constructors apply pattern rewriting, in-
cluding various kinds of constant propagation. This can be seen as
adding “online” PE to the existing “offline” stage distinction de-
fined by Rep types [42, 45]. In Figure 3, trait VectorsExpOpt can be
mixed in with VectorsExp and overrides vec_plus to simplify zero
additions. Rewriting is integrated with other forward optimizations:
Pattern matches of the form case Def(VectorZeros(n)) => ... will
look up the available definition of a symbol. Here is a simple ex-
ample program, before (left) and after constant folding (middle):
val x = 3 * y val x = 3 * y println(6 * y)
println(2 * x) println(6 * y)

DCE will later remove the multiplication and the binding for x
(right).



// Vector interface
trait Vectors extends Base {
// elided implicit enrichment boilerplate:
// Vector.zeros(n) = vec_zeros(n), v1 + v2 = vec_plus(a,b)
def vec_zeros[T:Numeric](n: Rep[Int]): Rep[Vector[T]]
def vec_plus[T:Numeric](a: Rep[Vector[T]], b: Rep[Vector[T]]): Rep[Vector[T]]

}
// low level translation target
trait VectorsLowLevel extends Vectors {
def vec_zeros_ll[T:Numeric](n: Rep[Int]): Rep[Vector[T]] =
Vector.fromArray(Array.fill(n) { i => zero[T] })

def vec_plus_ll[T:Numeric](a: Rep[Vector[T]], b: Rep[Vector[T]]) =
Vector.fromArray(a.data.zipWith(b.data)(_ + _))

}
// IR level implementation
trait VectorsExp extends BaseExp with Vectors {
// IR node definitions and constructors
case class VectorZeros(n: Exp[Int]) extends Def[Vector[T]]
case class VectorPlus(a: Exp[Vector[T]],b: Exp[Vector[T]]) extends Def[Vector[T]]
def vec_zeros[T:Numeric](n: Rep[Int]): Rep[Vector[T]] = VectorZeros(n)
def vec_plus[T:Numeric](a: Rep[Vector[T]], b: Rep[Vector[T]]) = VectorPlus(a,b)
// mirror: transformation default case
def mirror[T](d: Def[T])(t: Transformer) = d match {
case VectorZeros(n) => Vector.zeros(t.transformExp(n))
case VectorPlus(a,b) => t.transformExp(a) + t.transformExp(b)
case _ => super.mirror(d)

}
}
// optimizing rewrites (can be specified separately)
trait VectorsExpOpt extends VectorsExp {
override def vec_plus[T:Numeric](a:Rep[Vector[T]],b:Rep[Vector[T]])=(a,b)match{
case (a, Def(VectorZeros(n))) => a
case (Def(VectorZeros(n)), b) => b
case _ => super.vec_plus(a,b)

}
}
// transformer: IR -> low level impl
trait LowerVectors extends ForwardTransformer {
val IR: VectorsExp with VectorsLowLevel; import IR._
def transformDef[T](d: Def[T]): Exp[T] = d match {
case VectorZeros(n) => vec_zeros_ll(transformExp(n))
case VectorPlus(a,b) => vec_plus_ll(transformExp(a), transformExp(b))
case _ => super.transformDef(d)

}
}

Figure 3. Vector Implementation with IR and Lowering.

Applying Rewrites Speculatively Many optimizations are mutu-
ally beneficial. In the presence of loops, optimizations need to make
optimistic assumptions for the supporting analysis to obtain best
results. If multiple analyses are run separately, each of them ef-
fectively makes pessimistic assumptions about the outcome of all
others. Combined analyses avoid the phase ordering problem by
solving everything at the same time. The challenge, of course, is
to automatically combine analyses and transformations that are im-
plemented independently of one another.

Since the forward optimizations described above are applied at
IR construction time where loop information is incomplete, LMS
previously allowed rewrites and CSE only for purely functional op-
erations and not in the presence of imperative loops. These pes-
simistic assumptions, together with monolithic compound expres-
sions (see Section 3.4) prevented effective combinations of separate
rewrites.

Lerner, Grove, and Chambers showed a method of compos-
ing separately specified optimizations by interleaving analyses and
transformations [29]. We use a modified version of their algorithm
that works on structured loops instead of CFGs and using depen-
dency information and rewriting instead of explicit data flow lat-
tices. To the best of our knowledge, we are the first to extend
this approach to extensible compilers and a purely rewriting based
environment. Usually, rewriting is semantics preserving, i.e. pes-
simistic. The idea is to drop that assumption. As a corollary, we
need to rewrite speculatively and be able to rollback to a previous
state to get optimistic optimization. The algorithm proceeds as fol-
lows: for each encountered loop, apply all possible transforms to

the loop body, given empty initial assumptions. Analyze the result
of the transformation: if any new information is discovered throw
away the transformed loop body and retransform the original with
updated assumptions. Repeat until the analysis result has reached a
fixpoint and keep the last transformation as result. This process can
be costly for deeply nested loops, but compares favorably to the al-
ternative of running independent transformations one after another
until a global fixpoint is reached [29].

Here is an example of speculative rewriting, showing the un-
transformed program (left), the initial optimistic iteration (middle),
and the fixpoint (right) reached after the second iteration:
var x = 7 var x = 7 var x = 7 //dead
var c = 0 var c = 0 var c = 0
while (c < 10) { while (true) { while (c < 10) {
if (x < 10) print("!") print("!") print("!")
else x = c print(7) print(7)
print(x) print(0) print(c)
print(c) c = 1 c += 1
c += 1 } }

}

This algorithm allows us to do all forward data flow analyses and
transforms in one uniform, combined pass driven by rewriting. In
the example above, during the initial iteration (middle), separately
specified rewrites for variables and conditionals work together to
determine that x=c is never executed. At the end of the loop body
we discover the write to c, which invalidates our initial optimistic
assumption c=0. We rewrite the original body again with the new
information (right). This time there is no additional knowledge
discovered so the last speculative rewrite becomes the final one.

Speculative rewriting as used here is still a fully static transform–
not to be confused with speculative dynamic optimizations per-
formed inside virtual machines that may incur multiple profiling,
compilation and deoptimization cycles.

3.3 Separate Lowering Passes: Transformers
Previously LMS had a single code generation pass that scheduled
the IR graph, performing DCE and code motion. We generalize this
facility to allow arbitrary traversals of the program tree which re-
sults from scheduling the IR graph. Similar to other optimizations,
DCE and code motion work on high-level (possibly composite) IR
nodes.

Generic IR Traversal and Transformation Once we have a
traversal abstraction, transformation falls out naturally by building
a traversal that constructs a new staged program. The implemen-
tation is shown in Figure 4. Transformation needs a default case,
which we call mirroring (see trait VectorsExp in Figure 3). Mir-
roring an IR node will call back to the corresponding smart con-
structor, after applying a transformer to its arguments. Mirroring
loops is slightly more complicated than what is shown in Figure 3
because of the bound variable:
case ArrayFill(n,i,y) =>
Array.fill(transformExp(n), { j =>
t.withSubst(i -> j) { transformBlock(y) } }

Implementing Custom Transformers In our running example,
we would like to treat linear algebra operations symbolically first,
with individual IR nodes like VectorZeros and VectorPlus. In Fig-
ure 3, the smart constructor vec_plus implements a rewrite that sim-
plifies V+Z to V. CSE, DCE, etc. will all be performed on these
high level nodes.

After all those optimizations are applied, we want to transform
our operations to the low-level array implementation from Figure 2
in a separate lowering pass. Trait LowerVectors in Figure 3 imple-
ments this transformation by delegating back to user-space code,



// traversal
trait ForwardTraversal {
val IR: Expressions; import IR._
def traverseBlock[T](b: Block[T]): Unit =
focusExactScope(block) { stms =>
stms foreach traverseStm }

def traverseStm[T](s: Stm[T]): Unit =
blocks(stm.rhs) foreach traverseBlock

}
// transform
trait ForwardTransformer extends ForwardTraversal {
val IR: Expressions; import IR._
var subst: Map[Exp[_],Exp[_]]
def transformExp[T](s: Exp[T]): Exp[T] = // lookup s in subst
def transformBlock[T](b: Block[T]): Exp[T] = scopeSubst {
traverseBlock(b); transformExp(b.res) }

def transformDef[T](d: Def[T]): Exp[T] = mirror(d, this)
override def traverseStm(s: Stm[T]) = {
val e = transformDef(s.rhs); subst += (s.sym -> e); e }

}

Figure 4. Traversal and Transformer Interface.

namely method vec_plus_ll in trait VectorsLowLevel. The result of
the transform is a staged program fragment just like in Figure 2.

This setup greatly simplifies the definition of the lowering trans-
form, which would otherwise need to assemble the fill or zipWith
code using low level IR manipulations. Instead we benefit directly
from the staged zipWith definition from Figure 2. Also, further
rewrites will take place automatically. Essentially all simplifica-
tions are performed eagerly, after each transform phase. Thus we
guarantee that CSE, DCE, etc. have been applied on high-level
operations before they are translated into lower-level equivalents,
on which optimizations would be much harder to apply. To give a
quick example, the initial program
val v1 = ...
val v2 = Vector.zeros(n)
val v3 = v1 + v2
v1 + v3

will become
val v1 = ...
Vector.fromArray(v1.data.zipWith(v1.data)(_ + _))

after lowering (modulo unfolding of staged zipWith).

Worklist Transformers and Delayed Rewriting Transformers
can be extended with a worklist, which is useful if the result
may contain terms that need further transformation. With a work-
list transformer, we can register individual rewrites for particular
nodes. Running the transformer applies the rewrites, which may
register new replacements for the next iteration. The process stops
if no further work is required (empty work list).

Delayed rewriting is a simplified interface that allows specify-
ing lowerings together with the operations and the regular imme-
diate rewrites. This helps to reduce the boilerplate needed to de-
fine transformations. For example, here is the VectorZeros lowering
from Figure 3 recast as delayed rewrite:
def vec_zeros[T:Numeric](n: Rep[Int]) =
VectorZeros(n) atPhase(lowering) {
Vector.fromArray(Array.fill(n) { i => zero[T] })

}

The atPhase block is registered with worklist transformer lowering.
Before lowering, the IR node remains a VectorZeros node, which
allows other smart constructor rewrites to kick in that expect this
pattern.

3.4 Compound Expressions: Split and Merge
Since our IR contains structured expressions like loops and condi-
tionals, optimizations need to reason about compound statements.
This is not easy: for example, a simple DCE algorithm will not be
able to remove only pieces of a compound expression. Our solution
is simple yet effective: We eagerly split many kinds of compound

statements, assuming optimistically that only parts will be needed.
Splitting is implemented just like any other rewrite, and thus inte-
grates well with other unrelated optimizations (see Section 3.2). We
find out which parts are needed through the regular DCE algorithm
and afterwards, we reassemble the remaining pieces.

Effectful Statements A good example of statement splitting is
effectful conditionals:
var a, b, c = ... var a, b, c = ... var a, c = ...
if (c) { if (c) a = 9 if (c) a = 9
a = 9; b = 1 if (c) b = 1 else c = 3

} else if (!c) c = 3 println(a+c)
c = 3 println(a+c)

println(a+c)

From the conditional in the initial program (left), splitting creates
three separate expressions, one for each referenced variable (mid-
dle). DCE removes the middle one because variable b is not used,
and the remaining conditionals are merged back together (right).
Of course successful merging requires to keep track of how expres-
sions have been split. An extension of this simple merge facility
which attempts to merge expressions that may not have been split
before is loop fusion (Section 4.4).

Data Structures Splitting is also very effective for data struc-
tures, as often only parts of a data structure are used or modified.
This will be discussed in more detail in Section 4 below but here is
already a quick example. Assume c1 and c2 are complex numbers:
val c3 = if (test) c1 else c2
println(c3.re)

The conditional will be split for each field of a struct. Internally the
above will be represented as:
val c3re = if (test) c1re else c2re
val c3im = if (test) c1im else c2im // dead
val c3 = Complex(c3re, c3im) // dead
println(c3re)

The computation of the imaginary component as well as the struct
creation for the result of the conditional are never used and thus
they will be removed by DCE.

4. Data Structure Optimizations
High level data structures are a cornerstone of modern program-
ming and at the same time stand in the way of compiler optimiza-
tions. We illuminate the main issues compilers have with data struc-
tures as used by the two dominant programming paradigms.

OOP Object oriented programming treats every data value as an
object. This is a powerful pattern that makes it easy to extend lan-
guages with new functionality. In Scala, e.g., it is easy to add a
complex number class. But there is a price to be paid: allocating
each complex number as a separate object will not perform well.
Furthermore, if we are working with arrays of complex numbers
we get much better performance if we use a struct of array rep-
resentation. Staging and embedded compilers allow us to abstract
away the object abstraction and reason about individual pieces of
data that objects are composed of and possibly rearrange that data
in more efficient ways.

FP Functional programs create lots of intermediate results. This
is particularly bad for collection operations. Theoretically, com-
pilers can leverage referential transparency. But impure functional
languages need sophisticated effects analysis, which is hard if there
is a lot of abstraction. Our staged programs are much simpler be-
cause abstraction is stripped away. We can do better and simpler
effects analysis. A simple liveness analysis can turn copying into
in-place modification. A novel loop fusion algorithm (data paral-
lel and asymmetric, includes flatMap and groupBy) removes many
intermediate results (Section 4.4).



// generic struct interface
trait StructExp extends BaseExp {
abstract class StructTag
case class Struct[T](tag: StructTag, elems: Map[String,Rep[Any]]) extends Def[T]
case class Field[T](struct: Rep[Any], key: String) extends Def[T]
def struct[T](tag: StructTag, elems: Map[String,Rep[Any]]) = Struct(tag, elems)
def field[T](struct: Rep[Any], key: String): Rep[T] = struct match {
case Def(Struct(tag, elems)) => elems(key).asInstanceOf[Rep[T]]
case _ => Field[T](struct, key)

}
}
// splitting array construction
case class ArraySoaTag(base: StructTag, len: Exp[Int]) extends StructTag
override def arrayFill[T](size: Exp[Int], v: Sym[Int], body: Def[T]) = body match {
case Block(Def(Struct(tag, elems))) =>
struct[T](ArraySoaTag(tag,size),
elems.map(p => (p._1, arrayFill(size, v, Block(p._2)))))

case _ => super.arrayFill(size, v, body)
}
// splitting array access
override def infix_apply[T](a: Rep[Array[T]], i: Rep[Int]) = a match {
case Def(Struct(ArraySoaTag(tag,len),elems)) =>
struct[T](tag, elems.map(p => (p._1, infix_apply(p._2, i))))

case _ => super.infix_apply(a,i)
}
override def infix_length[T](a: Rep[Array[T]]): Rep[Int] = a match {
case Def(Struct(ArraySoaTag(tag, len), elems)) => len
case _ => super.infix_length(a)

}

Figure 5. Generic Struct interface and SoA Transform.

4.1 A Generic Struct Interface
Product types, i.e. records or structs are one of the core data struc-
ture building blocks. It pays off to have a generic implementation
that comes with common optimizations (Figure 5). Trait StructExp
defines two IR node types for struct creation and field access. The
struct creation node takes a hash map that relates (static) field iden-
tifiers with (dynamic) values and a tag that can hold further in-
formation about the data representation. The method field tries to
look up the desired value directly if the argument is a Struct node.
With this struct abstraction we can implement the data structure
splitting and merging example from Section 3.4 by overriding the
if-then-else smart constructor to create a conditional for each field
in a struct.

4.2 Unions and Inheritance
The struct abstraction can be extended to sum types and inheritance
using a tagged union approach [21, 34]. We add a clzz field to
each struct that refers to an expression that defines the object’s
class. Being a regular struct field, it is subject to all common
optimizations. We extend the complex number example with two
subtraits:
trait Complex
trait Cartesian extends Complex with Struct {
val re: Double; val im: Double }

trait Polar extends Complex with Struct {
val r: Double; val phi: Double }

Splitting transforms work as before: e.g. conditional expressions
are forwarded to the fields of the struct. But now the result struct
will contain the union of the fields found in the two branches,
inserting null values as appropriate. A conditional is created for
the clzz field only if the exact class is not known at staging time.
Given straightforward factory methods Cartesian and Polar, the
expression
val a = Cartesian(1.0, 2.0); val b = Polar(3.0, 4.0)
if (x > 0) a else b

produces this generated code:
val (re, im, r, phi, clzz) =
if (x > 0) (1.0, 2.0, null, null, classOf[Cartesian])
else (null, null, 3.0, 4.0, classOf[Polar])

struct("re"->re, "im"->im, "r"->r, "phi"->phi, "clzz"->clzz)

The clzz fields allows virtual dispatch via type tests and type
casting, e.g. to convert any complex number to its cartesian repre-
sentation:
def infix_toCartesian(c: Rep[Complex]) : Rep[Cartesian] =
if (c.isInstanceOf[Cartesian]) c.asInstanceOf[Cartesian]
else { val p = c.asInstanceOf[Polar]
Cartesian(p.r * cos(p.phi), p.r * sin(p.phi)) }

Appropriate rewrites ensure that if the argument is known to be
a Cartesian, the conversion is a no-op. The type test that inspects
the clzz field is only generated if the type cannot be determined
statically. If the clzz field is never used it will be removed by DCE.

4.3 Struct of Array and Other Data Format Conversions
A natural extension of the splitting mechanism is a generic array-
of-struct to struct-of-array transform (AoS to SoA). The mecha-
nism is analogous to that for conditionals. We override the ar-
ray constructor arrayFill that represents expressions of the form
Array.fill(n) { i => body } to create a struct with an array for
each component of the body if the body itself is a Struct (Figure 5).
Note that we tag the result struct with an ArraySoaTag to keep track
of the transformation. We also override the methods that are used
to access array elements and return the length of an array to do the
right thing for transformed arrays.

The SoA data layout is beneficial in many cases. Consider for
example calculating complex conjugates (i.e. swapping the sign of
the imaginary components) over a vector of complex numbers.
def conj(c: Rep[Complex]) = if (c.isCartesian) {

val c2 = c.toCartesian; Cartesian(c.re,-c.im)
} else { val c2 = c.toPolar; Polar(c.r, -c.phi) }

To make the test case more interesting we perform the calculation
only in one branch of a conditional:
val vector1 = Array.fill(100) { i => Cartesian(...) }
if (test) vector1.map(conj) else vector1

All the real parts remain unchanged so the array holding them
need not be touched at all. Only the imaginary parts have to be
transformed, cutting the total required memory bandwidth in half.
Uniform array operations like this are also a much better fit for
SIMD execution. The generated intermediate code is:
val vector1re,vector1im = ...
val vector1clzz = // array holding classOf[Cartesian] values
val vector2im = if (test) Array.fill(vector1size) {
i => -vector1im(i) } else vector1im

struct(ArraySoaTag(Complex, vector1size),
Map("re"->vector1re,"im"->vector2im,"clzz"->vector1clzz))

Note how the conditionals for the “re” and “clzz” fields have been
eliminated since the fields do not change (the initial array contains
cartesian numbers only). If the struct expression will not be refer-
enced in the final code DCE removes the “clzz” array.

In the presence of conditionals that produce array elements of
different types, a possible optimization would be to use a sparse
representation for the arrays that make up the result SoA (similar to
DPH [21]). However, all the usual sparse vs dense tradeoffs apply.

One concern with data representation conversions is what hap-
pens if an array is returned from a staged code fragment to the en-
closing program. In this case, the compiler will generate conversion
code to return a plain array-of-struct copy of the data.

4.4 Loop Fusion and Deforestation
The use of independent and freely composable traversal operations
such as v.map(..).sum is preferable to explicitly coded loops. How-
ever, naive implementations of these operations would be expensive
and entail lots of intermediate data structures. We present a novel
loop fusion algorithm for data parallel loops and traversals. The
core loop abstraction is
loop(s) x =G { i => E[x← f(i)] }



Generator kinds: G ::= Collect | Reduce(⊕) | Bucket(G)
Yield statement: xs← x
Contexts: E[.] ::= loops and conditionals

Horizontal case (for all types of generators):
loop(s) x1=G1 { i1 => E1[ x1 ← f1(i1) ] }
loop(s) y1=G2 { i2 => E2[ x2 ← f2(i2) ] }

loop(s) x1=G1, x2=G2 { i =>
E1[ x1 ← f1(i) ]; E2[ x2 ← f2(i) ] }

Vertical case (consume collect):
loop(s) x1=Collect { i1 => E1[ x1 ← f1(i1) ] }

loop(x1.size) x2=G { i2 => E2[ x2 ← f2(x1(i2)) ] }

loop(s) x1=Collect, x2=G { i =>
E1[ x1 ← f1(i); E2[ x2 ← f2(f1(i)) ]] }

Vertical case (consume bucket collect):
loop(s) x1=Bucket(Collect) { i1 =>

E1[ x1 ← (k1(i1), f1(i1)) ] }
loop(x1.size) x2=Collect { i2 =>
loop(x1(i2).size) y=G { j =>

E2[ y ← f2(x1(i2)(j)) ] }; x2 ← y }

loop(s) x1=Bucket(Collect), x2=Bucket(G) { i =>
E1[ x1 ← (k1(i), f1(i));

E2[ x2 ← (k1(i), f2(f1(i))) ]] }

Figure 6. Loop fusion.

where s is the size of the loop and i the loop variable rang-
ing over [0, s). A loop can compute multiple results x, each of
which is associated with a generator G. There are three kinds of
generators: Collect, which creates a flat array-like data structure,
Reduce(⊕), which reduces values with the associative operation ⊕,
or Bucket(G), which creates a nested data structure, grouping gen-
erated values by key and applying G to those with matching key.
Loop bodies consist of yield statements x←f(i) that pass values to
generators (of this loop or an outer loop), embedded in some outer
context E[.] that might consist of other loops or conditionals. Note
that a yield statement x←.. does not introduce a binding for x, but
passes a value to the generator identified by x. For Bucket genera-
tors, yield takes (key,value) pairs.

This model is expressive enough to represent many common
collection operations:
x=v.map(f) loop(v.size) x=Collect { i => x ← f(v(i)) }
x=v.sum loop(v.size) x=Reduce(+) { i => x ← v(i) }
x=v.filter(p) loop(v.size) x=Collect { i => if (p(v(i)))

x ← v(i) }
x=v.flatMap(f) loop(v.size) x=Collect { i => val w = f(v(i))

loop(w.size) { j => x ← w(j) }}
x=v.distinct loop(v.size) x=Bucket(Reduce(rhs)) { i =>

x ← (v(i), v(i)) }

Operation distinct uses a bucket reduction with function rhs,
which returns the right-hand side of a tuple element, to return a flat
sequence that contains only the rightmost occurence of a duplicate
element.

Other operations are accommodated by generalizing slightly.
Instead of implementing a groupBy operation that returns a sequence
of (Key, Seq[Value]) pairs we can return the keys and values in sep-
arate data structures. For a given selector function f that computes
a key from a value, the equivalent of (ks,vs)=v.groupBy(f).unzip
is:
loop(v.size) ks=Bucket(Reduce(rhs)),vs=Bucket(Collect) { i =>
ks ← (f(v(i)), v(i)); vs ← (f(v(i)), v(i)) }

This loop ranges over the size of v and produces two result col-
lections ks, a flat sequence of keys, and vs, a nested collections of
values that belong to the key in ks at the same index.

The fusion rules are summarized in Figure 6. Fusion of two
loops is only permitted if there are no other dependencies between

def preferences(ratings: Rep[Matrix[Int]],
sims: Rep[Matrix[Double]]) = {

sims.mapRowsToVector { testProfile =>
val num = sum(0, ratings.numRows) {
i => testProfile(ratings(i,1))*ratings(i,2) }

val den = sum(0, ratings.numRows) {
i => abs(testProfile(ratings(i,1))) }

num/(den+1)
}}

Figure 7. Snippet from collaborative filtering to be optimized

the loops, for example caused by side effects. Since we are working
with a graph-based IR, dependency information is readily available.
Vertical fusion, which absorbs a consumer loop into the producer
loop, is only permitted if the consumer loop does not have any de-
pendencies on its loop variable other than acessing the consumed
collection at this index. In a data parallel setting, where loops are
chunked, the producer may not be able to compute the exact in-
dex of an element in the collection it is building. Multiple instances
of f1(i) are subject to CSE and not evaluated twice. Substituting
x1(i2) with f1(i) will remove a reference to x1. If x1 is not used
anywhere else, it will also be subject to DCE. Within fused loop
bodies, unifying index variable i and substituting references will
trigger the usual forward rewriting and simplification. Thus, fu-
sion not only removes intermediate data structures but also provides
additional optimization opportunities inside fused loop bodies (in-
cluding fusion of nested loops).

Fixed size array construction Array(a,b,c) can be expressed as
loop(3) x=Collect { case 0 => x ← a

case 1 => x ← b case 2 => x ← c }

and concatenation xs ++ ys as Array(xs,ys).flatMap(i=>i):
loop(2) x=Collect { case 0 => loop(xs.size) { i => x ← xs(i) }

case 1 => loop(ys.size) { i => x ← ys(i) }}

Fusing these patterns with a consumer will duplicate the consumer
code into each match case. Therefore, implementations should im-
pose cutoff mechanisms to prevent code explosion. Code genera-
tion does not need to emit actual loops for fixed array constructions
but can just produce the right sequencing of yield operations.

5. Case Studies
We present several case studies to illuminate how our compiler
architecture and in particular the staging aspect enable advanced
optimizations related to data structures.

All experiments were performed on a Dell Precision T7500n
with two quad-core Xeon 2.67GHz processors and 96GB of RAM.
Scala code was run on the Oracle Java SE Runtime Environment
1.7.0 and the Hotspot 64-bit server VM with default options. We
ran each application ten times (to warm up the JIT) and report the
average of the last 5 runs. For each run we timed the computational
portion of the application.

5.1 Linear Algebra
We first consider two examples using an extended version of the
staged linear algebra library presented in Section 1. In the first
example, we use staged transformation, partial evaluation, rewrite
rules, and fusion together to transparently optimize a logical op-
eration on a sparse matrix into a much more efficient version that
only operates on its non-zero values. In the second example, we
show how staged transformations can elegantly specialize loops to
different computing devices by selecting a dimension to unroll and
expressing the unrolled loop as a simple while loop in the source
language.

Sparse User-Defined Operators Figure 7 shows an excerpt from
a collaborative filtering application. This snippet computes a user’s



trait SparseMatrix[A] extends Matrix[A] with Struct {
val numRows: Rep[Double], val numCols: Rep[Double],
val _data: Rep[Array[A]], val _nnz: Rep[Int],
val _rowPtr: Rep[Array[Int]],val _colIndices:Rep[Array[Int]]

}
trait SparseVector[A] extends Vector[A] with Struct {
val length: Rep[Int], val _data: Rep[Array[A]],
val _indices: Rep[Array[Int]],val _nnz: Rep[Int]

}

Figure 8. Data structure definition for sparse matrix and vector

preference for other users given the user’s previous ratings and a
pre-computed NxN similarity matrix. The code is written in a
representation-agnostic way – it works whether sims is dense or
sparse using generic operations. Our goal is to transform the func-
tion mapRowsToVector into an efficient sparse operation if sims is
sparse and the user-provided function argument to mapRowsToVector
returns 0 when the input is a vector (row) containing only 0s. By ex-
pressing this as a transformation (rather than during construction),
the IR node for mapRowsToVector can take part in other analyses and
rewritings prior to being lowered to operate on the underlying ar-
rays.

Figure 8 defines new data structures for sparse matrices and vec-
tors in the manner described in Section 4. Using these definitions,
we define the transformed version of mapRowsToVector as follows:
def infix_mapRowsToVector[A,B](x: Rep[Matrix[A]],

f: Rep[Vector[A]] => Rep[B]) = {
def isZeroFunc(f: Rep[Vector[A]] => Rep[B], len: Rep[Int]) =
// use symbolic evaluation to test the user-defined
// function f against a zero-valued argument
f(Vector.zeros[A](len)) match {
case Const(x) if (x == defaultValue[B]) => true
case _ => false

}
if (x.isInstanceOf[SparseMatrix] && isZeroFunc(f,x.numRows))
MatrixMapRowsToVec(x,f) atPhase(lowering) {
// transform to operate only on non-zero values
new SparseVector[B] {
val length = x.numRows
val _indices = asSparseMat(x).nzRowIndices // elided
val _data = _indices.map(i=>f(x(i)))
val _nnz = _indices.length

}
}

else MatrixMapRowsToVec(x,f) // default
}

Staging is the critical ingredient that allows this transformation
to be written expressively and correctly. We first use the program-
matic struct support with inheritance from Section 4.1 to operate
uniformly on dense and sparse matrices and to obtain access to the
underlying representation in order to perform the transformation. If
the argument is a sparse matrix, mapRowsToVector calls isZeroFunc,
which symbolically evaluates the user-defined function f at staging
time to discover if it actually has no effect on empty rows in the ar-
gument matrix. This discovery is in turn enabled by further rewrite
rules that implement symbolic execution by optimizing operations
for constant values. For example, we define sum as:
override def sum[A:Numeric](start: Exp[Int], end: Exp[Int],

block: Exp[Int] => Exp[A]) =
block(fresh[Int]) match {
case Const(x) if x == 0 => unit(0.asInstanceOf[A])
case _ => super.sum(start,end,block)

}

We are able to successfully perform this transformation of
mapRowsToVector because LMS re-applies all rewrite rules as the
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// x = input matrix, k = num clusters
// c = distance from each sample to nearest centroid
val newLocations = Matrix.fromArray {
// returns an Array[Vector[Double]]
Array.range(0,k) { j =>
val (points,weightedpoints) = sum(0, x.numRows) {
i => if (c(i) == j) (1,x(i))

}
val d = if (points == 0) 1 else points
weightedpoints / d

}}

Figure 10. Snippet from k-means clustering to be optimized

transformed IR is constructed. After the transformation, the code
is further optimized by fusing together the two sum statements in
Figure 7 (but the fused summation is still only run on non-zero
rows). Figure 9 shows the results of running the collaborative fil-
tering snippet with input data of varying sparsity. As expected,
the transformation provides greater benefit with increasing sparsity
because we switched from a representation-agnostic implementa-
tion to a representation-sensitive one. We also implicitly parallelize
the transformed map function, resulting in good speedup over the
sequential baseline automatically.

Loop Parallelization for Heterogeneous Processors The final
linear algebra example we will consider is the parallelization of
a loop in the well-known k-means clustering algorithm. Figure 10
shows the snippet, which updates the cluster locations in the current
iteration to the mean of all the samples currently assigned to that
cluster.

K-means clustering is a statistical algorithm that is amenable to
both multicore parallelization and GPU execution [28]. However,
the Array.range statement in Figure 10 poses a challenge: each
of the k cluster locations can be computed in parallel, or we can
compute the inner sum statement in parallel. Since k� x.numRows
usually, on multicore machines with a smaller number of hardware
threads (< 16) it is better to parallelize the outer (fromArray) dimen-
sion, but on massively parallel machines such as GPUs it is much
better to parallelize the inner (sum) dimension.

If we internally represent parallel operators such as Array.range
and sum as loops, a parallelization framework (such as Delite [5])
can automatically generate parallel and/or GPU code for them.
Using the notation from Section 3.3, we can then define a device-
specific transformation as follows:
trait LoopTransformerExp extends LinAlgExp { self =>
val t = new LoopTransformer { val IR: self.type = self }
def hasNestedLoop(l: Loop[_]): Boolean // elided
def transformCollectToWhile(l: Collect[_]) = {



// construct transformed representation
var i = 0
val size = t.transformExp(l.size)
val res = alloc(size)
while (i < size) {
t.transformBlock(l.update)
(res,i,t.transformBlock(l.func)(i))

i += 1
}
res

}}
trait LoopTransformer extends ForwardTransformer {
val IR: LoopTransformerExp
import IR._
override def transformStm(stm: Stm): Exp[Any] = stm match {
case TP(s,l:Loop[_]) if (generateGPU && hasNestedLoop(l)) =>
l.body match {
case c:Collect[_] => transformCollectToWhile(c)
case _ => super.transformStm(stm)

}
case _ => super.transformStm(stm)

}}

This transformation unwraps the Array.range function, which
is internally represented by a loop, into an explicit while loop to
expose any nested parallel operators. Although we elide it here, it is
easy to add a heuristic to decide (statically if known or dynamically
if not) whether or not to unwrap a loop based on its size. Note
that due to staging, the transformed representation can be written
as simple source code, which is easier to understand than direct
IR manipulations. The transformation is only triggered if we are
attempting to generate GPU code; if we are generating CPU code,
we parallelize the outer loop to maximize our hardware utilization.

5.2 Regular Expression Matchers
Specializing string matchers and parsers is a popular benchmark in
the partial evaluation literature [2, 10, 42]. Usually, specialization
produces a set of mutually recursive functions, which is also our
starting point. However this code does not achieve top performance
compared to fast automata libraries. We show that treating gener-
ated functions as data objects and transforming them into a more
efficient form yields performance that exceeds that of an optimized
library.

We consider “multi-threaded” regular expression matchers, that
spawn a new conceptual thread to process alternatives in parallel.
Of course, these matchers do not actually spawn OS-level threads,
but rather need to be advanced manually by client code. Thus, they
are similar to coroutines. Here is an example for the fixed regular
expression .*AAB:
def findAAB(): NIO = {
guard(C(’A’)) {
guard(C(’A’)) {
guard(C(’B’), true) {
stop()

}}} ++
guard(W) { findAAB() } // in parallel ...

}

The first argument to guard is a character classs, C(.) de-
fines a singleton character class and W denotes the wildcard.
We added combinators on top of the core abstractions that can
produce matchers from more conventional regular expressions:
many(seq)(star(W), C(’A’), C(’A’), C(’B’)) for the example
above. We can easily add a parser for textual regular expressions
on top of these combinators.

NFA to DFA Conversion Internally, the given matcher uses an
API that models nondeterministic finite automata (NFA):

def exploreNFA[A:Manifest](xs: NIO, cin: Rep[Char])(
k: (Boolean, NIO) => Rep[A]): Rep[A] = xs match {

case Nil => k(false, Nil)
case NTrans(W, e, s)::rest =>
val (xs1, xs2) = xs.partition(_.c != W)
exploreNFA(xs1,cin)(continueWith(k, x2))

case NTrans(cset, e, s)::rest =>
if (cset contains cin) {
val xs1 = // restrict rest: knowing cset
exploreNFA(xs1,cin)((flag,acc) => k(
flag || e(), acc ++ s()))

} else {
val xs1 = // restrict rest: knowing_not cset
exploreNFA(xs1, cin)(k)

}
}

Figure 11. NFA Exploration

type NIO = List[NTrans]
case class NTrans(c: CharSet, x: () => Boolean, s: () => NIO)
def guard(c: CharSet, x: => Boolean = false)(s: => NIO): NIO = {
List(NTrans(c, () => x, () => s))

}
def stop(): NIO = Nil

An NFA state consists of a list of possible transitions. Each
transition may be guarded by a set and it may have a flag to be
signaled if the transition is taken. It also knows how to compute
the following state. For simplicity, we use set of characters for the
guard and a boolean for the flag, but of course, we could use generic
types as well. Note that the API does not mention where input is
obtained from (files, streams, etc.).

We will translate NFAs to DFAs using staging. The Automaton
class is part of the unstaged DFA API. The staged API is just a thin
wrapper.
case class Automaton[I, O](out: O, next: I => Automaton[I,O])
type DfaState = Automaton[Char,Boolean]
type DIO = Rep[DfaState]
def dfa_trans(e: Boolean)(f: Rep[Char] => DIO): DIO

Translating an NFA to a DFA is accomplished by creating a
DFA state for each encountered NFA configuration:
def convertNFAtoDFA(flag: Boolean, state: NIO): DIO = {
val cstate = canonicalize(state)
dfa_trans(flag) { c: Rep[Char] => exploreNFA(cstate, c) {
convertNFAtoDFA

}
}}
convertNFAtoDFA(false, findAAB())

The LMS framework memoizes functions which, with the state
canonicalization (e.g. we need to remove duplicates), ensures ter-
mination if the NFA is in fact finite. Indeed, our approach is con-
ceptually similar to generating a DFA using derivatives of regu-
lar expressions [6, 35]: both approaches rely on identifying (ap-
proximately) equivalent automaton states; furthermore, computing
a symbolic derivative is similar to advancing the NFA by a sym-
bolic character, as explained next.

We use a separate function to explore the NFA space (see Fig-
ure 11), advancing the automaton by a symbolic character cin to
invoke its continuation k with a new automaton, i.e. the possible
set of states after consuming cin. The given implementation needs
only to treat the wildcard character set (denoted by W) specially. The
other character sets (single character or range) are treated generi-
cally, and it would be straightforward to add more cases without
changing this function. The algorithm tries to remove as many re-
dundant checks and impossible branches as possible (it relies on



def naiveFindAAB():
Automaton[Char, Boolean] = {
val x1 = {x2: (Char) =>
/*matched nothing*/
val x3 = x2 == ’A’
val x18 = if (x3) {
x17

} else {
x13

}

x18
}

val x12 = Automaton(true,x1)
val x7 = {x8: (Char) =>
/*matched AA*/
/* ... */

}
val x10 = Automaton(false,x7)
val x4 = {x5: (Char) =>
/*matched A*/
/* ... */

}
val x17 = Automaton(false,x4)
val x13 = Automaton(false,x1)
x13

}

def optFindAAB(input: String):
Boolean = {
val n = input.length
if (n==0) return false
var id = 0
var i = 0
val n_dec = n-1
while (i < n_dec) {
val x18 = input.charAt(i)
// first case analysis
// for next state id
id = id match {
case 0 =>
/*matched nothing*/
val x26 = x18 == ’A’
val x27 = if (x26) 2
else 0
x27

case 1 =>
/*matched AA ... */

case 2 =>
/*matched A ...*/

}
i += 1

}
val x18 = input.charAt(i)
// second case analysis
// for final boolean flag
id == 1 && x18 == ’B’

}

Figure 12. Generated matcher code for regular expression .*AAB.
Optimized code on the right.

the knowing and knowing_not binary functions on character sets).
This only works because the guards are staging-time values.

The generated code is shown in Figure 12 on the left. Each
function corresponds to one DFA state.

One straightforward optimization is to signal early stopping if
the boolean flag remains the same in all possible next states. To
do so, we change the DfaState so that the output can encode two
boolean values: the original flag and whether we can stop early.
This does not help for matching .*AAB, but it does for .*AAB.*,
as we can stop as soon as we find an occurrence of AAB.
Transforming Closures Our final implementation generates a
complete matcher from a String input to a Boolean output. The
generated code does not have functions nor Automaton states. In-
stead, we generate a case statement for each function. We do this
twice: in the middle of matching the input, the value of the case
analysis is the next functional state, while for the last character
matching, its value is the boolean flag output. Because all the cases
are inlined, we achieve early stopping by simply returning from the
function with the boolean flag output in the midst of the first case
analysis. The optimized code is shown in Figure 12 on the right.

Figure 13 shows benchmarking results. We compare our “naive”
implementation (Staged 1), which includes the early stopping op-
timization, to the JDK and dk.brics.automaton [31] libraries. On
average, our “naive” implementation is more than 2.5x faster
than JDK’s and about 3x slower than dk.brics.automaton. In or-
der to speed up our implementation, we experimented with various
staged transformations. Our final implementation (Staged 2) beats
dk.brics.automaton by nearly a factor of 2 and JDK by a factor
of 15. For comparison, we also tried a completely unstaged plain
Scala version, where we directly evaluate the code instead of stag-
ing it, and it is 140x slower than JDK.
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Figure 13. Regexp Benchmark. The first graph shows the relative
execution time of matching an 10, 100, or 107 long input string of
the form A+B on the regular expression .*AAB. The second graph
summarizes the relative performance over many different inputs
and regular expressions. Speedups are reported on top of each bar.

// lineItems: Array[LineItem]
val q = lineItems filter (_.l_shipdate <= Date(‘‘1998-12-01’’)).
groupBy (_.l_linestatus) map { case (key,g) => new {
val lineStatus = key
val sumQty = g.map(_.l_quantity).sum
val sumDiscountedPrice =
g.map(l => l.l_extendedprice*(1.0-l.l_discount)).sum

val avgPrice = g.map(_.l_extendedprice).sum / g.size
val countOrder = g.size

}} sortBy(_.lineStatus)

Figure 14. Sample query (similar to Q1 of the TPC-H benchmark)

5.3 Collection and Query Operations
Next we consider the case of executing queries on in-memory col-
lections. Figure 14 shows a simplified version (for illustration pur-
poses) of TPC-H Query 1 written using the standard Scala collec-
tions API. A straightforward execution of this query as written will
be substantially slower than what could be achieved with an opti-
mized low-level imperative implementation. In particular executing
this code in Scala will perform a new array allocation for the out-
put of each collection operation. Furthermore, every element of the
arrays will be a heap allocated object since both LineItem and the
anonymous class for the result are implemented as JVM classes.
These classes however contain only fields, no methods, and as such
we can apply struct optimizations to them during staging. Since
the fields of these structs can all be represented as JVM primitive
types, we can eliminate all of the heap allocated objects at runtime
by performing array-of-struct (AoS) to struct-of-array (SoA) trans-
formations for each array. Furthermore since LineItem as defined by
TPC-H contains 16 fields, while Query 1 only accesses 7 of those
fields, the DCE engine eliminates the arrays of the other 9 fields all
together once the SoA form is created.

Fusion Optimization In addition, we eliminate the intermedi-
ate array and map data structures produced by each of the collec-
tion operations by fusing operations (Section 4.4) at two levels. At
the inner level, creating the output struct requires multiple reduc-
tion operations. Horizontal fusion combines the reductions for each
field into a single loop. On the outer level, the query groups the
collection according to a key function and then maps each group
(sub-collection) down to a single element. We fuse the groupBy and
map together by using the rule for consuming a bucket-collect oper-
ation. Essentially the fusing algorithm observes that the output ele-
ment of each group can be computed directly by reducing the entire
input collection into the buckets defined by the key function of the
groupBy. Furthermore, the vertical consume-collect rule fuses the
filterwith the groupBy by predicating the addition of each element
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Figure 15. Performance of TPC-H Query 1 with staging optimiza-
tions. The y-axis shows the normalized execution time for 30 mil-
lion records with speedups reported at the top of each bar.

to the appropriate group (and after groupBy-map fusion, predicating
the reduction of each element into the appropriate group). Finally,
horizontal fusion combines the operations for each field (array in
the SoA form) into a single loop. Therefore, the program produces
the output collection directly from the input with a single loop and
no intermediate arrays. Sorting the output yields the final result.

We perform one final optimization during code generation of
the fused loop. In order to implement Bucket(Reduce) operations
we internally allocate a generic HashMap instance to manage the
buckets. However, when n Bucket(Reduce) operations with the same
key function appear in the same loop, we do not allocate a HashMap
for each operation. Instead we use a single HashMap to determine
an array index for each key, and then use that index to access the n
arrays allocated to hold the result of each operation, eliminating the
overhead of computing the same bucket location multiple times.
Performance Results We evaluate these optimizations in Figure
15. The execution times are normalized to the plain Scala library
implementation of the query (leftmost bar). The middle bar shows
the benefits of staging but without applying SoA transformations
or groupBy fusion. Here staging is only applying basic optimiza-
tions such as common subexpression elimination and code mo-
tion. In particular the staged version contains the following key
improvements. Higher-order abstractions such as anonymous func-
tions have been eliminated, construction of the Date object within
the filter has been lifted out of the loop and converted into an Int,
pairs of primitive types have been packed into a single primitive
type with twice the bits (e.g., a Pair[Char,Char] is encoded as an
Int), and the map-reduce chains in the inner loop have been fused.
Since we do not perform SoA transformations in this version, the
LineItem struct is generated as a custom JVM class and the unused
fields remain in the generated code. These optimizations provide
approximately 6x speedup over the library implementation.

The rightmost bar shows the results of adding AoS to SoA trans-
formations and all of the fusion optimizations described above,
namely fusing the filter, groupBy, and map operations into a sin-
gle loop. These optimizations provide approximately 5.5x speedup
over the basic staging optimizations and 34x speedup over the li-
brary implementation. In addition, this version scales better when
parallelized across multiple cores as it parallelizes over the size
of the input collection rather than over the number of groups. Ul-
timately, with staging optimizations and parallel code generation,
we were able to attain 163x speedup with 8 cores over a single-
threaded library implementation.
Heterogeneous Targets AoS to SoA conversion greatly improves
the ability to generate code for GPUs. In this example, however,
the data transfer cost overwhelms any speedup for end-to-end runs.
Another interesting target besides multi-core and GPU devices are
“Big Data” cluster frameworks such as Hadoop or Spark. We can
use the same collections API to target several different frameworks
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Figure 16. Synthetic file system to HTML (left, x-axis represents
the template nesting depth. Depths 1 and 2 are omitted due to
very short running times). Commercial websites (right). The y-axis
shows normalized running time compared to plain Scala, speedup
numbers are shown at the top of each bar.

by adding appropriate framework-specific lowerings. A recent pa-
per [1] contains more details and demonstrates good speedups.
5.4 String Templates
String template libraries are in wide use today to transform struc-
tured data into a flat string representation (e.g. XML, HTML, or
JSON). While the semantics are simple and easy to express in a
functional way, template engine implementations are often intricate
because data copying and intermediate data structures need to be
avoided to obtain good performance. We present the core of a tem-
plate engine based on purely functional collection operations (list
construction, concatenation and comprehensions), with loop fusion
(Section 4.4) taking care of removing intermediate data structures.

A simple HTML menu can be rendered like this:
def link(uri: Rep[String], name: Rep[String]) =
List("<a href=’", uri, "’>", name, "</a")

def renderItem(i: Rep[Item]) = List("<li><ul>") ++
i.subitems.flatMap(link(i.name, i.link)) ++ List("</ul></li>")

def usersTable(items: Rep[List[Item]]) = List("<ul>") ++
items.flatMap(x => renderItem(x)) ++ List("</ul>")

When executing this code without fusion optimization, each
flatMap operation traverses the lists produced by the nested tem-
plate one more time. Each concat (++) operation incurs an addi-
tional traversal. This results in performance that, for fixed output
size, decreases linearly with the level of template nesting. The
asymptotic worst case complexity is thus quadratic in the output
size, whereas an imperative implementation would be linear.

Since all function calls are unfolded at staging time, our fu-
sion transformation (Section 4.4) is able to remove the unnecessary
traversals and data structures, provided that only core collection
operations are used to express templates. The generated code tra-
verses the input data structure just once, emitting strings directly
into a single output buffer.

Benchmark results are reported in Figure 16. We demonstrate
the ability of obtaining asymptotic speedups on a synthetic bench-
mark that generates HTML representations of a file system struc-
ture with growing levels of nesting: with fusion enabled, speedups
grow with the depth of nesting. Furthermore, we implemented
mock templates to resemble the structure of three public web sites,
yielding speedups of up to 8.6x over the plain, unstaged Scala im-
plementation.

6. Discussion
As shown in Section 5, our system is able to achieve order of
magnitude (and in one case even asymptotic) speedups on a varied
range of non-trivial high level programs. While we are not aware of
any other system that demonstrably achieves comparable results on
a similar range of programs, these results bear the question whether
they could be achieved with similar effort using other means.



As suggested by one of the reviewers, a simpler design would
be to perform optimizations dynamically. For example, one could
implement vectors and matrices as a hierarchy of classes, with a
special class for zero vectors, instead of distinguishing zero vectors
statically in the IR. This is certainly a valid design, but it comes
with a number of drawbacks. First, runtime distinctions introduce
interpretive overhead, indirection and virtual calls, which also make
it harder for the compiler to generate efficient code. Second, while
dynamic information may be more precise than static information
at some times, the possibilities for dynamic optimizations are very
limited in other key aspects: For example, it is not clear how to
integrate DCE or any other optimization that requires non-local
knowledge (liveness, horizontal fusion).

Another question posed by a reviewer was whether staging re-
ally simplifies transformation compared to state-of-the art rewrit-
ing systems such as those included in language workbenches like
Spoofax [24] or JetBrains MPS [19]. While these systems are im-
pressive, we believe they serve a different purpose and that the ca-
pability to programmatically remove abstraction at all intermediate
levels, with strong guarantees about the residual code, is hard to
overstate in the context of program optimization. For example, the
code in Figure 3 transforms symbolic linear algebra operations to
the same zero-overhead traversals shown in Figure 2, with higher
order functions and type class instances removed by staging, with-
out dedicated compiler analysis. Staging enables us to express a
program (or model) transformer as an interpreter; this is an ad-
vantage because writing an interpreter in an expressive language
is arguably simpler than implementing a transformer, even with
good toolkit support. A key aspect is linguistic reuse of abstractions
of the meta language. For example, our recent work on JavaScript
generation using LMS [27] re-uses Scala’s CPS transform [40] at
staging-time to generate asynchronous code that is in continuation
passing style (CPS). By contrast, WebDSL [17], which is imple-
mented in Spoofax, has to implement the CPS transform afresh, for
each language construct of the object language.

Working with a graph-based IR also makes a qualitative differ-
ence compared to expression trees. Most importantly, it becomes
much easier to implement transforms that require dependency in-
formation. Our fusion algorithm (Section 4.4), for example, does
not require loops to be syntactically close or adjacent to be fused:
def calcSum() = array.sum
def calcCount() = array.filter(_ > 0).count
println("sum: " + calcSum())
println("avg: " + (calcSum() / calcCount()))

Staging will inline the calcSum and calcCount calls and the fusion
algorithm will combine all traversals into a single loop. Any algo-
rithm that only considers dependent traversal expressions will miss
the horizontal fusion opportunities across the two println state-
ments. This is commonly the case for pure front-end approaches
based e.g. on C++ expression templates.

Another key aspect of our design is the different treatment of
lowering transforms (handled in separate passes one after the other)
and optimizations (combined into joint simplification passes using
speculative rewriting). We believe this distinction is essential to
make optimizations reliable by avoiding phase ordering problems
and making sure that high-level optimizations are applied exhaus-
tively before lowerings take place.

Finally, there is the question of programmer effort required to
achieve similar results. From our perspective, the most important
aspects are that the optimizations we present can be applied grad-
ually, and that they are reusable for all clients of an optimized li-
brary. We expect that end user programmers will not usually write
any transformations on their own, but they can add rewrites if they
need. Library developers who wish to add optimizations need to
implement functionality corresponding to the code we show (e.g.

in Figure 3) but they can do so in a gradual way: Start with code
similar to Figure 1, add staging (Figure 2), and, if that is not suffi-
cient, add further optimizations (Figure 3). Delayed rewriting (Sec-
tion 3.3) can further reduce boilerplate. The guarantees provided by
the type system (non-Rep[T] expressions evaluated at staging time)
and smart constructors (no IR node constructed if rewrites match)
help ensure that optimizations take place in the intended way. As a
debugging aid, transformed code can be emitted at any time.
6.1 Related Work
Extensible compilers have been studied for a long time, recent
examples in the Java world are Polyglot [33] and JastAdd [13].
The Glasgow Haskell Compiler also allows custom rewrite rules
[22]. There are also elaborate approaches to library specific op-
timizations inspired by formal methods. ROSE [36] is a frame-
work for building source-to-source translators that derives auto-
mated optimizations from semantics annotations on library abstrac-
tions. COBALT [30] is a domain-specific language for implement-
ing optimizations that are amenable to automated correctness rea-
soning. Tate et al. [48] present a method of generating compiler
optimizations automatically from program examples before and af-
ter a transformation.

Delite [5, 28, 41] is a parallelization framework for DSLs devel-
oped on top of LMS. Previously, Delite had a notion of a multi-level
IR: some IR nodes could be viewed from several different angles
at the same time (say, as a parallel loop and as a matrix operation).
This caused problems because “earlier”, more high-level views had
to be carried along and obsolete or fully exploited information was
never discarded, limiting the choices of the compiler. We have used
the techniques presented in this work to extend Delite and to im-
plement domain-specific optimizations (similar to those presented
in the case studies) for existing Delite DSLs such as OptiML [44].
Delite was also used as the parallel execution engine for the case
studies in this paper. Compared to Delite, this paper presents a gen-
eral extensible compiler architecture, not limited to domain specific
languages. Previous publications on LMS [38, 39] presented only
the pure front-end, single pass instantiation. The use of Rep[T] types
to define binding times in LMS is inspired by earlier work on finally
tagless or polymorphic language embedding [8, 18].

Tobin-Hochstadt et al. [50] propose languages as libraries in
Racket and make pervasive use of macros for translation. Our
approach of using staging is similar in spirit. Earlier work on
realistic compilation by program transformation in the context of
Scheme was presented by Kelsey and Hudak [25].

The ability to compile high-level languages to lower-level pro-
gramming models has been investigated in several contexts. Elliot
et al. [14] pioneered embedded compilation and used a simple im-
age synthesis DSL as an example. Telescoping languages [26] is
a strategy to automatically generate optimized domain-specific li-
braries. In C++, expression templates [51] are popular to imple-
ment limited forms of domain specific optimizations [23, 52]. The
granularity is restricted to parts of a larger template expression.

Nystrom et al. [34] shows a library based approach to translating
Scala programs to OpenCL code. This is largely achieved through
Java bytecode translation. A similar approach is used by Lime [3]
to compile high-level Java code to a hardware description language
such as Verilog.

Our compiler infrastructure implements a set of advanced op-
timizations in a reusable fashion. Related work includes program
transformations using advanced rewrite rules [4], combining anal-
yses and optimizations [9, 29, 53] as well as techniques for elim-
inating intermediate results [12, 54] and loop fusion [16]. An in-
teresting alternative to speculative rewriting is equality saturation
[47], which encodes many ways to express an operation in the IR.

As an example of using partial evaluation in program trans-
formation, Sperber and Thiemann [43] perform closure conver-



sion and tail call introduction by applying offline partial evaluating
to a suitable interpreter. More recently, Cook et al. [11] perform
model transformation by partial evaluation of model interpreters.
Partial evaluation corresponds to constant folding and specializa-
tion whereas our approach allows arbitrary compiler optimizations,
arbitrary computation at staging/specialization time to remove ab-
straction overhead and provides strong guarantees about what be-
comes part of the residual code (type Rep[T] residual, vs T static).
6.2 Conclusion
We have demonstrated a compiler architecture that achieves order
of magnitude speedups on high-level programs by fusing collection
operations, changing data layout and applying further optimiza-
tions on high-level objects, enabled by intermediate languages with
staging and a facility to combine optimizations without phase or-
dering problems. Our system combines several novel pieces with
existing techniques, which together provide optimization power
that is greater than the sum of the parts.
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