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We transport multi-stage programming from functional to relational programming, with novel constructs to

give programmers control over staging and non-determinism. We stage interpreters written as relations, in

which the programs under interpretation can contain holes representing unknown expressions or values. By

compiling the known parts without interpretive overhead and deferring interpretation to run time only for the

unknown parts, we compound the benefits of staging (e.g., turning interpreters into compilers) and relational

interpretation (e.g., turning functions into relations and synthesizing from sketches). We extend miniKanren

with staging constructs and apply the resulting multi-stage language to relational interpreters for subsets

of Racket and miniKanren as well as a relational recognizer for context-free grammars. We demonstrate

significant performance gains across multiple synthesis problems, systematically comparing unstaged and

staged computation, as well as indicatively comparing with an existing hand-tuned relational interpreter.
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1 Introduction

This paper concerns extending the techniques of staged functional programming to the relational

programming context. Relational programming—pure, all-modes constraint logic programming—

provides concise uniform solutions to problems across a wide number of areas. Figure 1 shows

two illustrative examples. In the first example, we synthesize part of the append function from a

sketch [Solar-Lezama 2009] and some examples of its behavior. In the second, we invert [Harrison

and Khoshnevisan 1992] the behavior of append and derive the set of ways to split the given list. The
uniform solution for these two example tasks and a host of others [Byrd et al. 2017] hinges on using

an interpreter implemented as a relation [Byrd et al. 2012] in a relational programming language.

The price of interpretation is interpretive overhead, and presently, the performance penalty of

interpretation makes the relational interpreter approach impractical for most applications.
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(synth/sketch (e)
([append

(lambda (xs ys)
(if (null? xs)

ys
(cons
,e
(append (cdr xs) ys))))])

[(append '() '()) -> ()]
[(append '(a) '(b)) -> (a b)]
[(append '(c d) '(e f)) -> (c d e f)])
↩→
(car xs)

(a) Example-based synthesis from a program
sketch. The first part sketches the append body
with ,e creating a hole. The remainder provides
example invocations and expected outputs.

(invert-execute
([append

(lambda (xs ys)
(if (null? xs)

ys
(cons
(car xs)
(append (cdr xs) ys))))])

(a b c))
↩→
(() (a b c))
((a) (b c))
((a b) (c))
((a b c) ())

(b) Function inversion generates the set of inputs
that lead to an output. Here, we compute values
of xs and ys so that (append xs ys) yields the
list (a b c)

Fig. 1. Two examples of tasks the relational interpreter technique enables.

In the functional-programmingworld, staging [Jørring and Scherlis 1986; Taha 1999] is an effective
technique for eliminating interpretive overhead. Stratifying the computation into a sequence of

stages permits pre-computing earlier stages and thereby generating a residual program that may run

faster than the original. A multi-stage program is a conventional program plus staging annotations

that declare which program fragments should wait to be computed in a later stage.

What’s more, a multi-stage program can be instead understood as an ordinary single-stage

program by ignoring the staging annotations. This erasure property [Inoue and Taha 2016] distin-

guishes multi-stage programming from other program generation techniques, and offers a unique

advantage for programmers. With staging, program generators can often be derived simply by

starting with a correct but slow unstaged program and adding annotations. A programmer can

subsequently reason about a multi-stage program more easily by ignoring the staging annotations

and thinking about it as a single-stage program.

Combining staging with the relational programming model, however, requires grappling with

three challenges—non-determinism, pervasive partially-unknown data, and lazily checked com-

putations of constraints—that do not arise in the simpler functional programming context. Those

three facets are integral to the relational computation model: constraint-logic programming lan-

guages compute through accumulating information about unknowns (logic variables) and rely

on non-deterministic search to compute solutions to a query according to equations specified in

the program. All three features interact with staging and require new functionality in a staged

relational programming language.

This paper generalizes functional program staging to the context of all-modes relational pro-

gramming, in order to speed up relational interpreter-based programming tasks. In doing so we

solve the non-trivial task of reconciling staging with those three challenging features. Concretely,

we make the following contributions:

• We present a design (Section 3) and operational semantics (Section 4) formulti-stage miniKan-
ren, a staged relational programming language. Its design extends staging to accommodate

the unique features of relational programming. New kinds of staging annotations allow

programmers to control the effect of staging-time nondeterminism. Logic variables may
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appear anywhere, so data that a staged program expects to know at staging time may in

fact only be available at run time. Execution falls back to run-time in the case that the data

are in fact dynamic. Logic variables in terms may have associated constraints. Multi-stage

miniKanren properly residualizes any such constraints attached to cross-stage persistent

values [Hanada and Igarashi 2014; Taha and Sheard 2000].

• We state a multi-stage programming erasure property for the relational programming context

(Section 4.1)

• We use multi-stage miniKanren to stage a relational interpreter and other similar programs

such as a relational recognizer for context-free grammars. We apply the staged relational

interpreter to accelerate program inversion and synthesis from sketches (Section 5).

• We demonstrate that our technique achieves orders-of-magnitude performance improvements

as compared to unstaged relational programs (Section 6).

We assume passing familiarity with Scheme and the concept of functional program staging.

2 Background

Our work lies at the intersection of multi-stage programming and relational programming. The

following subsections review the necessary essentials of both areas through some concrete examples.

2.1 Relational Programming in miniKanren

Relational programming uses equations and constraints to compute relations. An 𝑛-ary miniKanren

relation computes a subset of the 𝑛-fold product of the set of miniKanren terms—finite cons-based
binary trees over an infinite set of atomic terms. The miniKanren [Friedman et al. 2005, 2018]

language is a common substrate for relational programming. A miniKanren program consists of a

set of relations defined with defrel and a query written with run. This simple relation and example

queries shows the basics of miniKanren programming and its all-modes behavior:

(defrel (same a b)
(== a b))

(run 1 (p q) (same 'dog p))
↩→ ((dog _.0))
(run 1 (q) (== 5 6))
↩→ ()

(run 1 (p q) (same (cons 'dog p) (cons p q)))
↩→ ((dog dog))
(run 1 (p q) (same (cons p (cons p 'dog)) q))
↩→ ((_.0 (_.0 _.0 . dog)))

The defrel form introduces a relation named same with parameters a and b, and its body is a

program that computes this relation. Here, that computation consists of a single goal that asserts
a and b describe the same tree. Equations are written with the == operator. Operationally, the ==
binary goal constructor unifies its arguments. Disequalities are written using the =/= operator, and

the language has several other basic constraints as well.

Having defined a set of relations, the programmer uses the run operator to query against this set

of relation definitions for satisfying terms. The first run asks for at most one solution of assignments

to variables p and q so that p is the same as the quoted symbol constant 'dog. The user can write

queries with respect to one or more variables (in this example the variables p and q) and miniKanren

expresses the answers with respect to these variables. Here we see miniKanren produces a list that

contains the single solution, (dog _.0). This solution is itself a list, containing a value for each

queried variable. In this case the variable p is assigned the term dog, and q’s value is unknown.
In general, something that looks like _.𝑛 represents an unknown value. Rather than one single

concrete answer with a value for p and a value for q, miniKanren returns a solution that describes

an infinite set of answers; every value we could assign q would also yield a distinct answer. The
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𝑒 ∈ Expr ::= 𝑏 | 𝑥 | (𝜆 (𝑥 ) 𝑒 ) | (or 𝑒1 𝑒2 ) | (𝑒1 𝑒2 )
𝑣 ∈ Value ::= 𝑏 | closure(𝑥, 𝑒, 𝜌 )
𝑥 ∈ Var
𝑏 ∈ Boolean ::= true | false

make-clos (𝑥, 𝑒, 𝜌 ) = closure(𝑥, 𝑒, 𝜌 )

𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ⇒ 𝑣

apply-clos (closure(𝑥, 𝑒, 𝜌 ), 𝑣1 ) ⇒ 𝑣
Closure

𝜌 ⊢ 𝑏 ⇒ 𝑏
const

𝜌 ⊢ 𝑒1 ⇒ 𝑣1 𝑣1 ≡ false 𝜌 ⊢ 𝑒2 ⇒ 𝑣

𝜌 ⊢ (or 𝑒1 𝑒2 ) ⇒ 𝑣
or-1

𝜌 ⊢ 𝑒1 ⇒ 𝑣 𝑣 . false

𝜌 ⊢ (or 𝑒1 𝑒2 ) ⇒ 𝑣
or-2

𝜌 (𝑥 ) = 𝑣

𝜌 ⊢ 𝑥 ⇒ 𝑣
ref

𝜌 ⊢ (𝜆 (𝑥 ) 𝑒 ) ⇒ make-clos (𝑥, 𝑒, 𝜌 )
abs

𝜌 ⊢ 𝑒1 ⇒ 𝑣1

𝜌 ⊢ 𝑒2 ⇒ 𝑣2 apply-clos (𝑣1, 𝑣2 ) ⇒ 𝑣

𝜌 ⊢ (𝑒1 𝑒2 ) ⇒ 𝑣
app

(a) Big-step semantics.

(defrel (make-closo x e env clos)
(== clos `(clos ,x ,e ,env)))

(defrel (apply-closo clos v1 v)
(fresh (x e env)

(== clos `(clos ,x ,e ,env))
(evalo-or e `((,x . ,v1) . ,env) v)))

(defrel (evalo-or e env v)
(conde

[(booleano e) (== e v)]
[(fresh (e1 e2 v1)

(== e `(or ,e1 ,e2))
(evalo-or e1 env v1)

(conde
[(== v1 #f) (evalo-or e2 env v)]
[(=/= v1 #f) (== v1 v)]))]

[(symbolo e) (lookupo e env v)]
[(fresh (x e1)

(== e `(lambda (,x) ,e1))
(symbolo x)
(make-closo x e1 env v))]

[(fresh (e1 e2 v1 v2)
(== e `(,e1 ,e2))
(evalo-or e1 env v1)
(evalo-or e2 env v2)
(apply-closo v1 v2 v))]))

(b) A relational interpreter for a small language.
It relates expressions, environments, and values

Fig. 2. Big-step semantics for 𝜆-or and a corresponding miniKanren relation.

result of a run query is always a list of answers; the list is empty if the query fails (e.g., in the

second query terms 5 and 6 will fail to unify).

Even short queries can lead to some non-trivial constraints with partially ground data. In the

third query, we unify two partially ground terms. These represent two trees where some of the tree

structure is known and fixed, but other portions are unknown, indicated by these logic variables.
The first term is a pair (built with cons) where the left-branch is an atom dog and the right branch

is the unknown p. The structure of the second term is also only partially known; it must be at least

a pair, but its left child p and its right child q are unknown. Satisfying that equality constraint on

these trees forces assignments of variables that q and p must both be dog.
Unification produces a most general solution by only assigning variables as concrete a value

as is required. The last query dictates that the variable q must be the same as some term (cons
p (cons p 'dog)). Since there are no further restrictions on p, however, q’s value has no more

known structure than that. The two uses of p in the first tree of that query lead to the repetition of

_.0 in the solution—although unconstrained to what term it is, all valid assignments for q demand

the same tree occur in both positions.

Computing more complex relations and asking more complex queries require using a few

additional syntactic forms—namely fresh and conde—and several additional constraints. Figure 2b
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(run 1 (e)
(evalo
`(letrec

([append
(lambda (xs ys)

(if (null? xs) ys
(cons ,e

(append (cdr xs) ys))))])
(list
(append '() '())
(append '(a) '(b))
(append '(c d) '(e f))))

initial-env
'(() (a b) (c d e f))))

↩→
((car xs))

(defrel (appendo xs ys zs)
(evalo
`(letrec

([append
(lambda (xs ys)

(if (null? xs) ys
(cons (car xs)

(append (cdr xs) ys))))])
(append ',xs ',ys))

initial-env
zs))

(run* (xs ys) (appendo xs ys '(a b c))
↩→
(() (a b c))
((a) (b c))
((a b) (c))
((a b c) ())

Fig. 3. Relational interpreter based implementations of the tasks in Figure 1.

introduces evalo-or, a relational interpreter for a small lambda-calculus based language with

booleans and or-expressions. We use the code in this figure both to introduce new miniKanren

forms and to illustrate a relational interpreter. It relies on two helper relations, make-closo and
apply-closo, and an elided relation lookupo. On the left-hand side of the figure, we show a

big-step semantics for the same language.

The quasiquote (`) and unquote (,) syntax is merely convenient shorthand for building term

structures containing logic variables at certain positions. The second relation, apply-closo demon-

strates the syntactic form fresh. The fresh form introduces new auxiliary logic variables scoped

over the goals in the body of the form. A goal created with fresh succeeds whenever the conjunc-

tion of its body goals succeed. The apply-closo relation introduces x, e, and env, and succeeds

when both the variable clos can take the form of a four-element list beginning with the symbol

clos and also when the second goal succeeds. Relation definitions can contain calls to themselves

or to other relations. In the final line of the apply-closo definition, the second argument in the

call to evalo is an extended environment, represented in a first-order fashion as a list of pairs. The

call to evalo-or takes place against a pair of variables x and a added to the front of env.
The evalo-or relation connects three terms when the first has the shape of an expression and

the second has the shape of an environment in which the expression evaluates to the third element,

the value. The body of evalo-or is a conde expression. The conde form expresses disjunction of

its clauses. Each clause expresses the conjunction of its goals. The first clause relies on a booleano
constraint. The miniKanren language implements a small variety of type constraints, which are

lazily enforced as logic variables are unified with values.

2.1.1 Synthesis with Relational Interpreters. The evalo-or interpreter only supports a small lan-

guage, but it is sufficient to show how relational evaluation can accomplish synthesis. This query

simultaneously infers that the only sensible completion for the p query variable is lambda and

evaluates the application to the value #t:

(run 1 (p q) (evalo-or `((,p (x) x) #t) '() q)) ↩→ ((lambda #t))

Previous work by Byrd et al. [2017, 2012] explores the use of relational interpreters for somewhat

larger functional languages to accomplish a surprising variety of synthesis tasks. Figure 3 shows how

the example-based synthesis and program inversion examples from Figure 1 can be accomplished

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.
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type orval =
| Bool of bool
| Closure of (orval -> orval);;

type orexp =
| Lit of bool
| Or of orexp * orexp
| Sym of string
| Lam of string * orexp
| App of orexp * orexp ;;

type env = (string * orval code) list

let rec eval_or (e : orexp) (env : env) : orval code =
match e with
| Lit b -> .< Bool b >.
| Or (e1, e2) ->

.< (match .~(eval_or e1 env) with
| Bool false -> .~(eval_or e2 env)
| v1 -> v1) >.

| Sym s -> List.assoc s env
| Lam (s, e) ->

.< Closure
(fun v -> .~(eval_or e ((s, .<v>.) :: env))) >.

| App (e1, e2) ->
.< (match .~(eval_or e1 env) with

| Closure f -> f .~(eval_or e2 env)) >.

Fig. 4. A MetaOCaml implementation of a staged interpreter for the language from Figure 2.

using the larger evalo relation provided by Byrd et al. From the perspective of miniKanren, the

only difference between these tasks is the position of the variables in the argument to eval. For the
synthesis task, we place the query variable e in the text of the append body; for program inversion,

the query variables xs and ys stand for arguments of a call to append.
The appendo relation holds between xs, ys, and zs when the interpreter relates the letrec

expression, including the call to the append function on values xs and ys in the body, to a value zs.
As the query result indicates, this indeed defines the relationship between lists to append and their

result. The binding expression in the letrec argument to evalo is the function append written in

the interpreter’s subset of Racket. Instead of writing the appendo miniKanren relation on terms

in a direct style, however, the example in Figure 3 defines the relationship at a meta-level. Byrd

et al. [2017] introduce this trick of using a function to define the behavior of a relation through

a relational interpreter; this append/appendo is due to them. The relational interpreter-based

synthesis technique is expressive, but in the absence of staging, using the relational interpreter

to query Racket functions in this way suffers from interpretive overhead. Let us turn to staging,

which offers a strategy to reduce this cost.

2.2 Program Staging

We use MetaOCaml [Calcagno et al. 2003; Kiselyov 2014] to re-introduce traditional multi-stage

functional programming as background material. Figure 4 contains an interpreter for the same

language as in Figure 2, implemented as a staged function in MetaOCaml.

The type orexp of the argument e shows that the expression is staging-time. The return value is

wrapped in code, which means that this program generates code that will, at run time, produce an

orval. The environment argument is mixed-stage data: its keys come at staging time but its values

at run time. The matching on eval_or’s input expression happens at staging time, outside of any

quotation (.< ... >.). Any matching or construction of values happens inside the quotations,

because we are generating code to execute at run time.

Recursive calls to the evaluator are unquoted (.~). The upshot of this is that we will splice the
code generated by the recursion into the surrounding quoted code. Environment lookup happens at

staging time; the result of the environment lookupwill be the orval code stored in the environment,

which will splice into the generated code in the context where the lookup occurs.

3 Introduction to Multi-stage miniKanren

As with traditional two-stage functional programming, staged relational programming separates

goal execution into a staging-time stage that generates goal code for run time, and a run-time stage in

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.
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which those generated goals, together with goals not executed at staging time, are subsequently run

in a query. In this model the two stages are separate and disjoint, with the staging-time component

wholly preceding the run-time component. Portions of code for each stage can be inter-nested, and

code executed at run time can contain fragments generated at staging time within it.

The goal annotation staged promotes a goal from run time to staging time, and the annotation

later correspondingly demotes a goal at staging time to a run-time goal, deferring its computation.

The query in Figure 5 demonstrates both of these annotations in context. By itself the query is not

(run 1 (q)
(staged

(fresh (p r)
(== q (list p r))
(== p 'dog)
(later (== r 'fish)))))

⇓ generated code (simplified)
(run 1 (q)

(fresh (r)
(== q (list 'dog r))
(== r 'fish)))

↩→ ((dog fish)) generated query's result

Fig. 5. Staging time and deferring to run time.

particularly interesting; the lone answer is the list (dog fish). Worth noticing however is the

stage at which each subgoal executes. Computation of the fresh goal will be performed during

staging because the goal is within a staged annotation. The (== r 'fish) unification executes

at run time because, while the staged annotation promotes the fresh goal to staging time, the

later annotation demotes its contents from staging time to run time.

A staging time computation produces code as its value. The run-time state is by definition not yet

available during staging time—in Figure 5 this includes the values of q and r. Therefore, sometimes

even some of the computation within a staged block must be deferred to run time. Other portions

of the computation, however, can be pre-computed during staging time and doing so simplifies

the residual task. Staging time computation simplifies the fresh goal, for example, by integrating

the value of p into (== q (list 'dog r)). This residual goal expresses solutions to the original

equations, and makes no reference to variable p. From the perspective of logic programming, the

staging simplifies this constraint problem and residualizes the remainder. From the implementer’s

perspective as a staging-aware functional programmer, this is persisting values across staging—

specifically constraints, which can be equational or otherwise. In this case multi-stage miniKanren

can optimize away the introduction of variable p. Any of the goals in the body of the fresh can be

re-ordered, and the staging time computation would produce the same result, because miniKanren

is a relational programming language.

Like any other goal, a relation call can be executed at staging time—provided the relation

definition is itself defined and available at staging time. A relation is defined for staging time with

defrel/staged, for example:

(defrel/staged (pet q)
(== q 'dog))

(run 1 (q) (staged (pet q)))

;; using pet in both stages
(run 1 (q) (staged (pet q)) (pet q))

The form defrel/staged defines a multi-stage relation. A use of this form creates at once both

a staged and a dynamic variant of the relation. The body of the static variant of a multi-stage

relation definition is a staging-time goal. The dynamic variant of the relation is created by erasing

the staging annotations from this body goal. The goal in the query resembles one of those from

Figure 5, except that the constraint is now indirectly stated through the relation pet. The second
query demonstrates this cross-stage persistence of the relation definition with a run-time relation

call to pet. A relation defined for staging time will persist into the run-time stage.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 211. Publication date: June 2025.
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Termination. A key requirement of staging, carried over from traditional functional multi-stage

programming is that the staging-time computation should terminate. The task of manually annotat-

ing the program puts the programmer in charge of determining where staging-time computation

begins and ends, and is what separates staging from partial evaluation more generally. Multi-stage

miniKanren programmers use the later annotation as needed to defer computations to runtime in

order to ensure termination at staging time.

Nondeterminism. Relational computations are in general non-deterministic, and the novel an-

notations in the multi-stage miniKanren system let the programmer specify how staging should

behave in the face of non-determinism. What’s more, a relation’s computation can be deterministic

or non-deterministic, depending on the values of the arguments in the call (see example in Figure 6).

(defrel/staged (noto p q)
(conde

[(== p #t) (== q #f)]
[(== p #f) (== q #t)]))

(run* (p q) (fresh (x) (noto p x) (noto #f q)))
↩→ ((#t #t) (#f #t))
(run 1 (p q) (staged (noto p q)))
;; error due to non-determinism

Fig. 6. Staging-time evaluation must produce a single result, unlike a run-time query.

The aim of staging is to produce a single residual program, and thus staging-time evaluation must

only produce a single result. The programmer staging the noto relation needs to resolve staging-

time non-determinism. Multi-stage miniKanren provides two ways to defer staging-time non-

determinism to run-time: the gather and fallback annotations. Both forms should syntactically

contain goals, and they indicate two different approaches as to how staging should handle the

nondeterminism of their contents. If there are multiple successful branches at staging time, do

we want to generate specialized code for each branch (gather), or do we want to fall back to

un-specialized, dynamic code (fallback)? The queries in Figure 7 demonstrate these two different

annotations’ consequences on the generated code.

(defrel/staged (noto/gather p q)
(gather

(conde
[(== p #t) (== q #f)]
[(== p #f) (== q #t)])))

(defrel/staged (noto/fallback p q)
(fallback

(conde
[(== p #t) (== q #f)]
[(== p #f) (== q #t)])))

(run* (p q)
(staged

(fresh (x)
(noto/gather #f q)
(noto/gather p x))))

⇓ generated code (simplified)
(run* (p q)

(fresh (x)
(== #t q)
(conde

[(== p #t) (== x #f)]
[(== p #f) (== x #t)])))

(run* (p q)
(staged

(fresh (x)
(noto/fallback #f q)
(noto/fallback p x))))

⇓ generated code (simplified)
(run* (p q)

(fresh (x)
(== #t q)
(invoke-fallback

noto/fallback/1 p x)))

Fig. 7. Two approaches to staging non-determinism in the noto relation.

The noto/gather and noto/fallback are exactly the noto of Figure 6, except with annota-

tions around the conde in their bodies. The annotations only affect code generation when non-

determinism arises at staging time. In each example, the second call to noto is deterministic because

the statically-known #f determines which branch to follow. As such, the generated code in both

queries contains an unconditional unification of the variable with #t.
When a staging-time use of the relation produces non-deterministic behavior, however, the

two annotations produce significantly different generated code. The first call to noto in the two

queries of Figure 7 illustrate the two possibilities. In such cases, annotating with gather causes
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staging to generate non-deterministic code. That non-deterministic code can however, benefit

from improvements made during the staging process. Annotating with fallback, however, will
defer the computation of the entire annotated goal to run-time. Unlike with later, fallback only

has this effect when a staging-time use of the relation produces non-deterministic behavior. The

noto/fallback-1 referred to in the generated code is a run-time relation equivalent to noto of
Figure 6. Our multi-stage miniKanren generates the relation when noto/fallback is defined, by
simply erasing the staging annotations from the body of the fallback form. Each fallback form

in a given relation produces a different entry point into run-time code. The 1 in noto/fallback-1
indicates this is the first (but in this example the only) fallback form.

The gather and fallback annotations each offer a way to make deterministic what would

otherwise be a non-deterministic staging-time use of a relation. When we expect to get non-

determinism at run-time we use gather. However, in other situations we may not have non-

determinism in the dispatch. It might just be that some variable whose value we had expected

to know at staging time is still unavailable. In these cases we want to generate a branch in the

residual program that accounts for these possibilities. A staged interpreter demonstrates these two

possibilities in a more substantial and less contrived context.

3.1 Staged Interpreters in Multi-stage miniKanren

The evalo-or-staged relation is a staged version of the evalo-or interpreter, specialized with

respect to the expression e (the first argument of the interpreter) in the first stage. The result of

specialization is miniKanren code that interprets the specific expression without the overhead of

the interpreter’s dispatch.

Before we consider its implementation, let’s look at the code generated in a small example query:

(run* (x-val v) (staged (evalo-or-staged '(or #f x) `((x . ,x-val)) v)))
⇓ generated code (simplified)
(run* (x-val v) (== v x-val))
↩→ ((_.0 _.0))

Notice that there are no unifications matching the syntax of the or-expression in the generated

code. In that sense, staging removes the overhead of the interpreter dispatch.

For all examples in this paper, the actual generated code is more verbose than shown. For clarity,

we present cleaned up code with friendly variable names and some basic optimizations applied,

including constant folding and dead code elimination. In practice, multi-stage miniKanren will be

used in conjunction with a compiler that performs such optimizations, e.g., [Ballantyne et al. 2024].

Figure 8 shows the implementation of evalo-or-staged. This staged interpreter is much like

Figure 2b with the addition of staging annotations, typeset with underlines. This small language

(defrel/staged (evalo-or-staged e env v)
(fallback

(conde
[(booleano e) (== e v)]
[(fresh (e1 e2 v1)

(== e `(or ,e1 ,e2))
(evalo-or-staged e1 env v1)
(gather
(conde

[(== v1 #f)
(evalo-or-staged e2 env v)]

[(=/= v1 #f) (== v1 v)])))]
[(symbolo e) (lookupo e env v)]
[(fresh (x e0)

(== e `(lambda (,x) ,e0))
(symbolo x)
(make-closo x e0 env v))]

[(fresh (e1 e2 v1 v2)
(== e `(,e1 ,e2))
(evalo-or-staged e1 env v1)
(evalo-or-staged e2 env v2)
(later (apply-closo v1 v2 v)))])))

Fig. 8. A staged interpreter for the 𝜆-or language of Figure 2. Staging annotations are underlined.
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showcases the features and forms of multi-stage miniKanren. It uses later to delay a goal from

staging time to runtime and fallback and gather to control the staging of nondeterminism.

This interpreter uses the later form to delay the execution of function bodies via apply-closo
in applications until runtime. This delay ensures that staging terminates even for non-terminating

lambda calculus expressions. Constraints, including ==, are automatically residualized cross-stage

as needed, so later annotations are not needed most of the time.

3.1.1 Handling Nondeterminism. Nondeterminism that arises in a relational interpreter sometimes

indicates an incomplete expression, and sometimes represents a decision to be made based on

runtime values. The evalo-or-staged interpreter has two conde expressions: one to dispatch on

the syntax of the expression, and one to handle the branch in or-expressions.

Holes in Staging-Time Terms. For dispatch on the expression, since the expression is conceptually

static, nondeterminism means that there is an unknown hole in the program. In this case, we should

fall back to run-time evaluation—so we use fallback. This query demonstrates the scenario:

(run 3 (e v) (staged (evalo-or-staged `(or (or #f ,e) #f) '() v)))
⇓ generated code (simplified)
(run 3 (e v)
(fresh (e-val)

(invoke-fallback evalo/1 e '() e-val)
(conde
[(=/= v #f) (== e-val v)]
[(== e-val #f) (== v #f)])))

↩→ ((#t #t) (#f #f) ((lambda (_.0) _.1) #<apply-rep>))

Runtime Nondeterminism. For the semantics of or, we want to specialize code for each option

and generate a run-time branch—so we use gather. This query demonstrates the result:

(run* (x-val v) (staged (evalo-or-staged `(or x #t) `((x . ,x-val)) v)))
⇓ generated code (simplified)
(run* (x-val v)
(conde

[(=/= x-val #f) (== v x-val)]
[(== x-val #f) (== v #t)]))

↩→ (((_.0 _.0) $$ (=/= ((_.0 #f)))) (#f #t))

When the interpreter’s first argument is fully ground, the dispatch on the parameter e is deter-

ministic. However, when evaluating (or x #t) we don’t know the value of x, mapped to the

query variable x-val in the environment. Therefore, we want to generate code in the residual

program that accounts for both possibilities, with each residual branch specialized to the expression.

Notice that in the second branch, v is unified with the concrete value #t from the expression being

evaluated, rather than being discovered through some recursive runtime call to the evaluator.

3.1.2 Sharing Code for Abstractions. When staging the interpretation of a program that applies a

lambda expression several times, we want to generate code corresponding to the lambda body once,

together with an invocation of that code for each application. A staged interpreter in a functional

language such as MetaOCaml uses host-language lambdas in the interpretation of object-language

lambdas. These host-language lambdas evaluate to first-class functions. This strategy is illustrated

in Figure 4. The case for Lam returns a quotation containing an ML function.

For miniKanren, the equivalent to a first-class function would be a first-class relation. Supporting

first-class relations in general requires higher-order unification. Multi-stage miniKanren instead

includes a restricted form of first-class relation, employed in Figure 9. The defrel-partial/staged
form defines a relation that can be partially applied. Such a definition has two lists of formal
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(defrel-partial/staged (applyo rep [x e env] [v1 v])
(evalo-or-staged e `((,x . ,v1) . ,env) v))

(defrel/staged (make-closo x e env clos)
(specialize-partial-apply clos applyo x e env))

(defrel (apply-closo clos v1 v)
(finish-apply clos applyo v1 v))

Fig. 9. Helpers for the small staged interpreter of Figure 8.

parameters: one for an initial partial application, and one for the final application. The goal forms

specialize-partial-apply and finish-apply execute these application steps.

In Figure 9, the applyo relation handles a function application: it evaluates the function body e in
an environment env extended with a binding of the function parameter x to a value v1. The staged
relational interpreter represents closures as a partial application of this relation via make-closo. A
function application is evaluated by finishing the applyo relation application, providing the value

for the function argument and the term to unify the evaluation result with via apply-closo.
To avoid the complexities of higher-order unification, we require that both the partial-apply

and finish-apply forms specify the name of the relation that is partially applied. That way, when

the partially applied relation value (here, clos) is not known, miniKanren can nonetheless continue

evaluation by falling back to a runtime version of the original relation, using fresh logic variables

to represent the values from the initial partial application (here, x, v, and env).
Figure 10 shows the code generated by the relational interpreter for a small example using a

first-class function: the identity function passed to a lambda, binding the function to the name f
and applying it twice. The generated code contains two apply-rep terms, one for each lambda in

the source program. An apply-rep term represents the result of a partial application and includes

the name of the partially applied relation, the arguments given in the partial application, and a

function representing specialized code for the partial application. Notice that the specialized code

for the first lambda contains finish-apply forms that invoke the partially applied relation used

to represent the second function, passed as f.

(run* (v)
(staged (evalo-or-staged '((lambda (f) (or (f #t) (f #f)))

(lambda (x) x))
'() v)))

⇓ generated code (simplified)
(run* (v)

(fresh (proc1 proc2)
(== proc1 (apply-rep 'applyo '(f (or (f #t) (f #f)) ())

(λ (f out)
(fresh (f-res)

(finish-apply f applyo #t f-res)
(conde [(=/= f-res #f) (== f-res out)]

[(== f-res #f) (finish-apply f applyo #f out)])))))
(== proc2 (apply-rep 'applyo '(x x ()) (λ (x out) (== x out))))
(finish-apply proc1 applyo proc2 v)))

↩→ ((_.0 #t))

Fig. 10. Generated code with first-class values for partially applied relations, used to represent the staged
evaluation of object-language lambda expressions.
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term var tv, term 𝑡

goal 𝑐𝑝∈{𝑟,𝑠,𝑙 } F (== 𝑡 𝑡) | (=/= 𝑡 𝑡) | etc.
| (fresh (tv ...) 𝑔𝑝 ...) | (conde (𝑔𝑝 ...) ...)
| (partial-apply 𝑡 rname 𝑡 ...) | (finish-apply 𝑡 rname 𝑡 ...)

runtime goal 𝑔𝑟 F 𝑐𝑟 | (staged 𝑔𝑠)

staging-time goal 𝑔𝑠 F 𝑐𝑠 | (later 𝑔𝑙) | (gather 𝑔𝑠) | (fallback 𝑔𝑠)
| (specialize-partial-apply 𝑡 𝑟 𝑡 ...)

later goal 𝑔𝑙 F 𝑐𝑙

definition 𝑑 F (defrel (rname param ...) 𝑔𝑟)
| (defrel/staged (rname param ...) 𝑔𝑠)
| (defrel-partial (rname tv [tv ...] [tv ...]) 𝑔𝑟)
| (defrel-partial/staged (rname tv [tv ...] [tv ...]) 𝑔𝑠)

expression e F (run* (tv ...) 𝑔𝑟) | (run 𝑛 (tv ...) 𝑔𝑟)

Fig. 11. The syntax of multi-stage miniKanren.

Name Description

$empty The unique empty stream.

$singleton(𝑥 ) Returns a stream of length 1 whose only element is 𝑥 .

$append(𝑠1, 𝑠2) Returns a stream whose elements include those of 𝑠1 and 𝑠2. This operation

interleaves, taking elements from each stream as they become available.

$append-map(𝑓 , 𝑠) Given a function 𝑓 which returns a stream, returns the result of mapping 𝑓

over 𝑠 , producing a stream of streams, then $append-ing all of the streams

together. Appears elsewhere as »= or flatMap.
$take(𝑛, 𝑠) Returns the first 𝑛 elements of the stream 𝑠 as a list.

$takeAll(𝑠) Returns all the elements of the stream 𝑠 as a list.

Fig. 12. Stream operations

4 Semantics

This section presents the syntax of multi-stage miniKanren together with a semantics for staging-

time evaluation of a desugared core language, focusing on the treatment of nondeterminism. Due

to space limitations the presentation does not address relation definitions and applications or the

disequality, type, and absence constraints [Byrd et al. 2012] provided by the implementation.

The hallmark of relational programming is a pure, nondeterministic mental model. Like many

miniKanren implementations, our semantics is based on interleaving streams [Hemann et al. 2016;

Kiselyov et al. 2005]. One way to understand this model is in terms of “many worlds”, where

nondeterministic choice splits the world into two, one for each option. The central definition of

our semantics, presented in Figure 13, is the denotation of a staged goal, 𝐺J𝑔K𝜌𝜎 . Each world is

represented as a state 𝜎 , and the denotation of a staged goal 𝑔 is a function𝐺J𝑔K𝜌𝜎 from an initial

state 𝜎 and environment 𝜌 to a stream of states in which the goal holds. These streams are lazy

and potentially infinite. The metafunctions for manipulating streams are outlined in Figure 12 and

correspond to the implementation from Hemann et al. [2016].

The denotation is defined for a desugared core syntax; Figure 11 shows the surface syntax.

Desugaring transforms a conde into a disjunction (disj) of conjunctions (conj). Desugaring also
replaces the implicit conjunction in the body of a fresh with an explicit conj.
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𝜎 = (subst, code, determinacy-check)

vars(𝜌), vars(𝜎) Find the set of variables appearing anywhere in the environment or state.

add-code(𝑔𝑙 , 𝜌, 𝜎) Conjoin the code accumulated for runtime evaluation in 𝜎 with a new goal,

where term variable references in the goal are replaced by their values from 𝜌 .

walk*(𝑡, 𝑠𝑏),walk*(𝑠𝑡𝑥, 𝑠𝑏) Apply a substitution to all logic variables in a term or syntax object containing

terms until a fixed point is reached.

TJtK𝜌 Replace variable references in the term with their value from 𝜌 .

GJ(== t1 t2)K𝜌𝜎 = sb = unify(TJt1K𝜌 , TJt2K𝜌 , subst(𝜎))
if sb then $singleton(set-subst(sb, 𝜎))
else $empty

GJ(fresh (tv) 𝑔𝑠)K𝜌𝜎 = lv ∉ (vars(𝜌) ∪ vars(𝜎))
𝜌′ = 𝜌 [𝑡𝑣 ↦→ 𝑙𝑣]
GJ𝑔𝑠K𝜌 ′𝜎

GJ(conj 𝑔𝑠 1 𝑔𝑠 2)K𝜌𝜎 = $append-map(𝜆𝜎′ .GJ𝑔𝑠 2K𝜌𝜎 ′ ,GJ𝑔𝑠 1K𝜌𝜎 )
GJ(disj 𝑔𝑠 1 𝑔𝑠 2)K𝜌𝜎 = $append(GJ𝑔𝑠 1K𝜌𝜎 ,GJ𝑔𝑠 2K𝜌𝜎 )

GJ(later 𝑔𝑙)K𝜌𝜎 = $singleton(add-code(𝑔𝑙 , 𝜌, 𝜎))
GJ(fallback 𝑔𝑠)K𝜌𝜎 = if determinacy-check(𝜎) then $singleton(𝜎)

else


𝜎′ = set-determinacy-check(𝜎,𝑇 )
case $take(2,GJ𝑔𝑠K𝜌𝜎 ′ )
[] ⇒ $empty
[𝑥] ⇒ GJ𝑔𝑠K𝜌𝜎
_ ⇒ $singleton(add-code(erase(𝑔𝑠 ), 𝜌, 𝜎))

GJ(gather 𝑔𝑠)K𝜌𝜎 = if determinacy-check(𝜎) then $singleton(𝜎)
else $singleton(add-code((disj . capture-syntax(𝑔𝑠 , 𝜌, 𝜎)), 𝜌, 𝜎))

capture-syntax(𝑔𝑠 , 𝜌, 𝜎) =
𝜎′ = set-code(𝜎, succeed)
states = $takeAll(GJ𝑔𝑠K𝜌𝜎 ′ )
map(generate-syntax(𝜌, 𝜎), states)

generate-syntax(𝜌, 𝜎) (𝜎′) =
sb = subst(𝜎′)
𝐿𝑠𝑢𝑏𝑠𝑡 = for (𝑥, 𝑡) ∈ 𝑠 : (== 𝑥 walk*(𝑡, sb))
𝐿𝑠𝑡 = walk*(code(𝜎′), sb)
𝑣 = vars(𝜎′) \ (vars(𝜎) ∪ vars(𝜌))
(fresh (𝑣 . . .) 𝐿𝑠𝑢𝑏𝑠𝑡 . . . 𝐿𝑠𝑡 . . .)

erase : 𝑔𝑠 → 𝑔𝑙
erase(later 𝑔𝑙 ) = 𝑔𝑙
erase(gather 𝑔𝑠 ) = erase(𝑔𝑠 )
erase(fallback 𝑔𝑠 ) = erase(𝑔𝑠 )
erase(specialize-partial-apply 𝑡0 𝑟 𝑡1 ...) = partial-apply(𝑡0 𝑟 𝑡1 ...)

Fig. 13. The semantics of multi-stage miniKanren.

The staging-time state 𝜎 includes three pieces of information: a substitution, which stores all the

information we know about the program’s logic variables; a code store, which accumulates code to

be evaluated at run time; and a flag used during fallback’s determinism check, explained below.

The environment 𝜌 is a map from the set of syntactic variables to terms. We require that multi-stage

miniKanren programmers write their programs such that staging-time evaluation produces only a

single state. The code stored in this state is then evaluated at runtime.

The semantics of unification (==), existential variable binding (fresh), conjunction (conj), dis-
junction (disj) are standard, following the implementation of Hemann et al. [2016]. The denotations

for the staging annotations later, gather, and fallback are the novel portion.
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(defrel/staged (listso x ls)
(fallback (disj (== ls '())

(fresh (rest) (conj (== ls (cons x rest)) (listso x rest))))))
(run 1 (q) (staged (listso 7 q)))

(a) The listso relation builds lists ls of every length that contain only the value x. The query provides a fresh
logic variable q for the ls argument, leading to nondeterminism that triggers fallback to runtime evaluation.
If instead a ground value were to be provided for ls, the relation evaluation would complete at staging time.

GJ(listso 7 q)K{q ↦→ q'}(∅,succeed,𝐹 )

⇒ (Evaluate the relation call by inlining the body of listso.)

GJ(fallback (disj (== ls '())

(fresh (rest) (conj (== ls (cons 7 rest)) (listso 7 rest)))))K{ls ↦→ q'}(∅,succeed,𝐹 )
Evaluation of the fallback form checks whether the argument may produce more than one result:

$take(2,GJ(disj (== ls '())

(fresh (rest) (conj (== ls (cons 7 rest)) (listso 7 rest))))K{ls ↦→ q'}(∅,succeed,𝑇 ) )
⇒ (Evaluate the denotation of the fallback argument; the recursive call to listso yields an inner fallback.)

$take(2, $append($singleton( ({q' ↦→ [ ] }, succeed,𝑇 ) ),
GJ(fallback ...)K{ls ↦→ rest'}({q' ↦→ [7 | rest']},succeed,𝑇 ) ) )

⇒ (Because the determinacy-check flag is set, the inner (fallback ...) trivially succeeds.)

$take(2, $append($singleton( ({q' ↦→ [ ] }, succeed,𝑇 ) ),
$singleton( ({q' ↦→ [7 | rest'] }, succeed,𝑇 ) ) ) )

⇒ (Fully evaluating the stream $take yields a list of two result states with different substitutions.)

[ ({q' ↦→ [ ] }, succeed,𝑇 ), ({q' ↦→ [7 | rest'] }, succeed,𝑇 ) ]

⇒ (As there are multiple possibilities, the evaluation of fallback residualizes the erasure of its argument.)

$singleton(add-code(erase((disj ...)), {ls ↦→ q'}, (∅, succeed, 𝐹 ) ) )

(b) Steps of staging-time evaluation. In this case, evaluation of fallback discovers that its argument goal is
not determinate, so it residualizes a version of the argument goal with all staging annotations erased.

Fig. 14. A program and staging-time evaluation trace illustrating the semantics of fallback.

The denotation of a later goal 𝐺J(later 𝑔𝑙)K𝜌𝜎 is a stream containing a single state which

defers the evaluation of the goal 𝑔𝑙 to run time by including it in the code field.

The denotation of a fallback goal 𝐺J(fallback 𝑔𝑠)K𝜌𝜎 is either the result of evaluating 𝑔𝑠 at

staging time, or is a stream containing a state in which evaluation of 𝑔𝑠 has been deferred to

run-time. The goal 𝑔𝑠 evaluates at staging time if it is proved to be determinate—that is, if it is

certain to produce only a single answer at staging time. Otherwise, the goal is deferred to run time.

The check to decide whether a goal is determinate is approximate. Precisely deciding determinacy

could require evaluating the goal fully, which might lead to nontermination.
1
Instead, our design

assumes that programmers use fallback and gather goals such that recursive evaluation within

a fallback eventually reaches one of these goals. The determinacy check conservatively assumes

that such nested fallback or gather goals always succeed, without evaluating them.

The fallback determinacy check is implemented by evaluating the goal𝑔𝑠 with the “determinacy-

check” flag set. With the flag set, any fallback or gather goal within 𝑔𝑠 trivially succeeds. The

check uses the $take metafunction to evaluate the stream just far enough to find out whether or

not it contains at least two answers. Figure 14 demonstrates this process with an evaluation trace.

1
Our semantics does not include relation application, so all goals terminate. In the full system, goals may diverge.
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GJ(gather (disj (conj (== p #t) (== q #f))

(conj (== p #f) (== q #t))))K{p ↦→ p',q ↦→ q'}(∅,succeed,𝐹 )
To evaluate the gather, we first evaluate all possible results of the form’s argument goal:

capture-syntax((disj (conj (== p #t) (== q #f)) (conj (== p #f) (== q #t))),

{p ↦→ p′, q ↦→ q′ }, (∅, succeed, 𝐹 ) )
⇒ (Evaluate the call to the capture metafunction and the denotation of the disjunction.)

map(generate-syntax({p ↦→ p', q ↦→ q'}, (∅, succeed, 𝐹 ) ),
[ ({p' ↦→ 𝑇, q' ↦→ 𝐹 }, succeed, 𝐹 ), ({p' ↦→ 𝐹, q' ↦→ 𝑇 }, succeed, 𝐹 ) ] )

⇒ (Generate the syntax for each disjunct.)

[(fresh () (== p' #t) (== q' #f)), (fresh () (== p' #f) (== q' #t))]

⇒ (Assemble the syntaxes from each result into a residualized disj.)

$singleton(add-code((disj (fresh () (== p' #t) (== q' #f))

(fresh () (== p' #f) (== q' #t))), {p ↦→ p', q ↦→ q'}, (∅, succeed, 𝐹 ) ) )

Fig. 15. An evaluation trace illustrating the semantics of gather. The argument goal is evaluated to produce
all of its result states, which are reified as syntax and residualized as a disjunction.

The denotation of a gather goal 𝐺J(gather 𝑔𝑠)K𝜌𝜎 is a singleton stream that residualizes a

disjunction with reified code for each state produced by the evaluation of 𝑔𝑠 . Producing code for all

the alternatives requires fully evaluating the stream produced by 𝑔𝑠 , so staging will only terminate

if 𝑔𝑠 terminates with a finite stream. Figure 15 shows an example evaluation trace.

Code generated by gather should not include code residualized outside the gather form. The

capture-syntax(𝑔𝑠 , 𝜌 , 𝜎) metafunction thus evaluates 𝑔𝑠 using a state with an empty code field. The
generate-syntax(𝜌 , 𝜎)(𝜎’) metafunction is applied to each state 𝜎 ′

in the stream produced by 𝑔𝑠 .

This metafunction constructs a conjunction that includes the goals explicitly residualized in 𝜎 ′
as

well as unification goals that reconstruct the substitution extension in 𝜎 ′
. Logic variables allocated

during the evaluation of 𝑔𝑠 are fresh-bound in the generated code, whereas others refer to the

surrounding context. These local variables are identified by comparing 𝜎 ′
with the the 𝜌 and 𝜎

provided as input to 𝑔𝑠 . Generating code as described in the semantics may residualize unification

goals for substitution elements left over from staging-time evaluation that are irrelevant at run

time. In the real system, a simple dead-code analysis removes these extra unifications.

Semantics for logic programs are often defined in terms of sets such as in Rozplokhas et al. [2020],

but our semantics use streams. In the context of staging, programmers often need precise control

over the code that is generated. For gather, the generated code depends on answer order, which is

preserved by streams. Streams also allow the fallback determinacy check to discover whether the

goal produces at least two answers without evaluating the entire stream.

4.1 Erasure

An important property of many multi-stage programming languages is erasure. The erasure of a
staged program is the unstaged program resulting from removing all staging annotations. Assuming

staging terminates, a staged program should have the same extensional behavior as its erasure

though different performance characteristics [Inoue and Taha 2016]. Figure 13 defines the erasure of

multi-stageminiKanren goals. Because of miniKanren’s nondeterministic semantics, the equivalence

between staged evaluation and erasure works modulo answer order. That is, staged evaluation

should produce the same answer set as erasure followed by unstaged evaluation.
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5 Removing Interpretive Overhead from RelationalQueries with Staging

As discussed in Section 2.1.1, relational interpreters make it surprisingly easy to specify a variety

of synthesis tasks. However, this flexibility comes at the cost of interpretive overhead. Staging can

alleviate that cost by eliminating interpretive overhead for statically-known program text. This

section discusses a number of concrete applications that benefit from staging. Section 6 evaluates

the performance improvements in detail.

5.1 Interpreting Functions Relationally

Figure 3 illustrates how functions such as append yield behavior equivalent to relations such as

appendo when executed within a relational interpreter, at the cost of interpretive overhead.

We created a staged relational interpreter, evalo-staged, for a similar subset of Racket as Byrd

et al. [2017]’s evalo. Similar to our simplified illustration in Figure 8, the evalo-staged interpreter
is staged with respect to the first argument—the program text. When program text is known in

advance, staging-time computation specializes the interpreter to the specific program.

Figure 16 revisits the earlier example from Figure 3 using staging. The definition in Figure 16a

mirrors the original appendo definition but includes a staged annotation and calls evalo-staged.
Because the function definition is fully known, staging generates miniKanren code that executes

the function without the overhead of the interpreter’s dispatch. The code, shown in Figure 16b,

constructs a term representing a specialized partial application of the apply-letrec relation from

the staged-evalo interpreter. The appendo-rep definition contains the specialized relation body.

The generated code in appendo-rep differs from what a miniKanren programmer would write by

hand because it is derived from the structure of the staged interpreter. For example, the interpretation

of the if expression and the null? check from the append definition yield separate conde goals in

the generated code, whereas a hand-written implementation would contain a single conde goal.

(a). With staging-time computation
(defrel (appendo xs ys zs)

(staged
(evalo-staged
`(letrec

([append #| elided defn |# ])
(append ',xs ',ys))

initial-env
zs)))

⇓
(b). Generated appendo relation
(defrel (appendo xs ys zs)

(fresh (rep)
(== rep (apply-rep

#| elided partial app args |#
'apply-letrec
appendo-rep))

(finish-apply rep
(apply-letrec (list xs ys) zs))))

(c). Generated appendo rep, simplified
(define appendo-rep

(λ (xs-and-ys zs)
(fresh (b xs ys)

(absento 'struct xs) (absento 'struct ys)
(== (list xs ys) xs-and-ys)
(conde

[(== xs '()) (== b #t)]
[(=/= xs '()) (== b #f)])

(conde
[(=/= b #f) (== ys zs)]
[(fresh (a r d)

(=/= a 'struct)
(== b '#f)
(== xs (cons a d))
(== zs (cons a r))
(finish-apply rep

(apply-letrec
(list d ys) r)))]))))

Fig. 16. Rather than write miniKanren relations such as appendo directly, a programmer can write the append
function in Racket and use the staged relational interpreter to work with it as a relation, without interpretive
overhead. This definition of appendo stages the one in Figure 3. The generated code performs similarly to a
hand-written relation despite including some additional code due to the structure of the interpreter.
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The generated code also includes constraints to ensure that the list values do not overlap with the

interpreter’s other data types, which are represented by lists beginning with the tag 'struct.

5.2 Accelerating Program Synthesis By Sketch

When a relational interpreter evaluates a program where some of the program text is unknown, it

performs program synthesis. Staging can eliminate interpretive overhead for evaluations of known

parts of the program that occur during synthesis of the unknown parts. The query in Figure 17

synthesizes parts of an accumulator-passing style Fibonacci program that uses Peano numerals.
2

(run 1 (e1 e2 e3 acc1 acc2)
(staged

(evalo-staged
`(letrec (#| definitions of zero?, +, and - elided |#

[fib (lambda (n a1 a2)
(if (zero? n)

,e1
(if (zero? (sub1 n))

a2
(fib (- n '(s . z)) ,e2 ,e3))))])

(list (fib 'z ',acc1 ',acc2) #| six more examples elided |# ))
initial-env
'(z #| six more outputs elided |# ))))

↩→ ((a1 a2 (+ a1 a2) z (s . z)))

Fig. 17. Synthesizing parts of a Fibonacci function that uses a library of Peano arithmetic functions.

The query includes partial text for the Fibonacci function (a sketch) and complete definitions of the

arithmetic helper functions zero?, +, and - (elided for space). Staging the query generates specialized
code for the known portions of the program. When staged interpretation encounters a hole in the

program text (e.g., e1, e2, or e3), the fallback feature (Section 3.1.1) automatically generates a

call to the run-time interpreter. The run-time interpretation required for synthesizing expressions

in the holes incurs interpretive overhead. However, when runtime evaluation synthesizes a call to

one of the statically known helper functions such as the Peano + function, evaluation of the call

uses the specialized code that was generated for the definition.

5.3 Other Staged Interpreters

We have also created staged relational interpreters for two other object languages: miniKanren,

and context-free grammars. As with staged-evalo, synthesis using these interpreters avoids

interpretive overhead when parts of the object-language program text are statically known.

miniKanren-in-miniKanren. Joshi and Byrd [2021] introduce metaKanren, a relational interpreter

for a minimalist miniKanren. The following query uses our staged version of this interpreter to

complete a definition of the appendo relation:

(run 1 (relcall)
(fresh (w x y)

(symbolo w) (symbolo x) (symbolo y)
(synth-appendo-recursive-call `(call-rel appendo ,w ,x ,y))))

↩→ ((call-rel appendo d ys res))

Specifically, it synthesizes variable references to fill three holes in the recursive call to appendo.

2
Original code available at https://github.com/k-tsushima/Shin-Barliman/blob/master/transformations/peano.scm.
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Relational Recognizer. We also implemented a staged relational recognizer for strings of a provided

context-free grammar. The three-place relation recognizeo holds between a grammar, its start

symbol, and a string derivable from the start symbol using the grammar’s production rules. Staging

specializes the recognizer to the grammar provided, eliminating overhead from the grammar data

structures. Such a relation can be used either to validate that a given string matches the grammar,

or to generate matching strings by leaving a logic variable in place of the string argument. The

query below generates 200 strings in the language of a small arithmetic expression grammar.

(define E-grammar
'((E . (or 'S (seq 'S * 'S))) (S . (or 'T (seq 'T + 'T))) (T . (or 0 (seq < 'E >)))))

(run 200 (str) (recognizeo E-grammar 'E str))

5.4 Interpreting Interpreters

Writing a relational interpreter in miniKanren is one way of implementing a synthesizer for a

language. However, there is a second, easier way: write an interpreter in Racket, and run it within

the evalo-staged relational interpreter. A programmer can write an eval function for an object

language 𝐿 in evalo-staged’s subset of Racket and then query the function like a relation. Staging

eliminates the interpretive overhead of evalo-staged, yielding performance akin to writing a

relational interpreter for 𝐿 directly. The following applications follow this pattern.

Quines with Quasiquote. Byrd et al. [2017] propose generating a quine expressed with quasiquote
using a nested interpreter. The language of their relational interpreter evalo (like our evalo-staged)
does not support quasiquotation. To work around this, Byrd et al. [2017] use an interpreter for

a subset of Racket that does include quasiquote, written in the language of their evalo. The
interpreter consists of two mutually recursive evaluation functions—one for standard evaluation

and one for evaluation under a quasiquote [Bawden 1999]. The query searches for a value q such
that interpreting it with the nested interpreter yields q itself:

(run 1 (q)
(absento 'error q) (absento 'struct q)
(staged
(evalo-staged
`(letrec ([eval-expr #| elided |#]

[eval-quasi #| elided |#])
(eval-expr ',q (lambda (x) 'error)))

initial-env
q)))

The query yields the quine ((lambda (x) `(,x ',x)) '(lambda (x) `(,x ',x))).

Regular Expressions. This example is adapted fromMight et al. [2011]. The regex-match function
decides if a string is in the language defined by a regular expression, using repeated application of the

Brzozozwksi derivative [Brzozowski 1964]. The function can be viewed as an interpreter for regular

expressions. With evalo-staged, we can use this function to synthesize regular expressions:

(run 1 (regex) (regex-matcho regex '(foo bar foo bar foo bar) #t))

This query generates the regular expression (foo bar)∗, which indeed matches the given string.

Theorem Checker Turned Prover. Figure 18 presents a quoted lambda expression for a prf?
function that checks proofs for a fragment of propositional logic. Aside from being quoted, it is an

ordinary program written in a subset of Racket. Just as in Figure 16 we turn append into appendo,
in Figure 18 we use staged interpretation to turn prf? into a relation proofo. The run query calls

the newly compiled relation with a partially instantiated term prf. The term includes a proposition

but leaves a hole, body, for the actual proof. The result of evaluation is constrained to be true (#t),
so the query searches for a proof that satisfies the prf? predicate.
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(define prf?-fn
'(lambda (prf)

(match prf
[`(,A ,prems Assm ()) (mem? A prems)]
[`(,B ,prems ModusPonens

(((,A => ,B) ,prems ,r1 ,prf1)
(,A ,prems ,r2 ,prf2)))

(and (prf? `((,A => ,B) ,prems ,r1 ,prf1))
(prf? `(,A ,prems ,r2 ,prf2)))]

[`((,A => ,B) ,prems =>Intro
((,B (,A . ,prems) ,r ,tr1)))

(prf? `(,B (,A . ,prems) ,r ,tr1))])))

(defrel (proofo prf is-valid)
(staged

(evalo-staged
`(letrec

( #| mem? binding elided |#
[prf? ,prf?-fn])
(prf? ',prf))

initial-env
is-valid)))

(run 1 (prf)
(fresh (body)

;; Prove C, assuming 𝐴, 𝐴 ⇒ 𝐵, and 𝐵 ⇒ 𝐶

(== prf `(C (A (A => B) (B => C)) . ,body))
(proofo prf #t)))

↩→

((C (A (A => B) (B => C)) ModusPonens
(((B => C) (A (A => B) (B => C)) Assm ())
(B (A (A => B) (B => C)) ModusPonens
(((A => B) (A (A => B) (B => C)) Assm ())
(A (A (A => B) (B => C)) Assm ()))))))

Fig. 18. A propositional logic theorem checker turned automatic prover. The proofo relation can both check
and generate proofs. It is defined by staged relational interpretation of the Racket prf? predicate, which in
its usual functional meaning can only check a proof’s validity.

6 Evaluation

In empirically evaluating multi-stage miniKanren, we consider the following research questions:

Q1 Is it feasible to stage a variety of relational programs, and in particular relational interpreters?

Q2 Does staging substantially reduce the runtime cost of solving synthesis problems and other

queries that take advantage of the flexibility of relational interpreters?

Q3 Is the time cost of staging reasonable?

To address these questions, we stage a collection of relational programs and evaluate the perfor-

mance of staged and unstaged benchmark queries. Table 1 presents the results.

Relational programs from the literature inspire many of our benchmarks. Byrd et al. [2017]

introduce the possibility of querying functions via a relational interpreter (Section 5.1) and lifting

relational behavior through additional layers of interpretation (Section 5.4). The specific tasks of

using the append function as a relation (the “invert-append” benchmark), lifting synthesis to proofs

(the “proofo” benchmarks), and lifting synthesis to a language with quasiquote via a metacircular

evaluator (“quasi-quine”) all come from Byrd et al. [2017]. The “pow-8-backward” benchmark exer-

cises staging in the context of the relational arithmetic library from Kiselyov et al. [2008]. The task

of synthesizing portions of the function defining the Fibonacci series (“synth-fib”, “synth-fib-larger”)

is inspired by Chirkov et al. [2020], which uses this example in the context of a relational interpreter

for JavaScript. Finally, Joshi and Byrd [2021] presents a relational interpreter for miniKanren,

written in miniKanren, which makes it possible to synthesize fragments of miniKanren programs.

Our “metaKanren” benchmark is one such synthesis task. The remaining benchmarks are programs

we created to explore the capabilities of multi-stage miniKanren.

The benchmarks in Table 1 are organized into four categories. The first category comprises

the simplest benchmarks, which are straightforward uses of relations staged with respect to

one argument. The benchmarks in the second category apply the evalo-staged interpreter to

Racket programs that include fully-ground function definitions. As described in Section 5.1, staging

has the effect of compiling such functions to miniKanren code. The benchmarks in the third
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Table 1. Times are in milliseconds. [> 5𝑚] indicates an execution that failed to terminate within 5 minutes.
Each benchmark represents a single execution on a 2021 Apple MacBook Pro with an M1 Max CPU and
64GB of RAM running macOS 14.2 and Racket v8.15. For benchmarks labeled with a multiplier (e.g., ×1000),
timings reflect repeatedly running the query that number of times to yield measurable results.

Name St
ag

in
g

St
ag

ed

U
ns

ta
ge

d

Sp
ee
du

p

Description

relations: Simple relations staged with respect to one staging-time argument.

replicate-unknown 6 288 237 0.82 Find a Peano numeral 𝑛 and a list of values 𝑙 such that replicating 𝑛

times each value in 𝑙 gives a given output (x1000)

replicate-partial 4 266 552 2.08 Given a partially-instantiated Peano numeral and fixed input list, repli-

cate 𝑛 times each value in 𝑙 (x10000)

pow8-backward 0 1650 2079 1.26 Solve 𝑛8 = 6561 via relational arithmetic [Kiselyov et al. 2008] (x1000)

grammar-synthesis 12 12 51 4.25 Find 200 strings that match a given grammar as in Section 5.3

functions: Functions written in Racket executing within the evalo-staged interpreter, exhibiting relational behavior.
invert-append 6 26 480 18.46 Use append to split a list as in Figure 3 (x1000)

fib 29 59 2800 47.46 Synthesize an input value for which fib returns 13 (x100)

fib-exprs 29 121 10490 86.69 Synthesize 5 input expressions for which fib returns 13
nnf 400 65 453 6.97 Transformation to negation normal form [Szeredi et al. 2014] (x1000)

interpreters: Queries that leverage interpreters within the evalo-staged interpreter to lift relational behavior to new languages.

eval-or 105 An interpreter written in Racket for the language of Figure 2b

eval-or 1 223 1869 8.38 Synthesize inputs and outputs to 𝜆𝑥.or 𝑥 𝑥 (x1000)

eval-or 2 108 1898 17.57 Synthesize 5 programs that evaluate to #t (x1000)
proofo 325 Checks the validity of proofs for implicational propositional calculus

proofo 1 1 22 22.00 Synthesize a proof of C from assumptions as in Figure 18

proofo 2 59 554 9.39 Synthesize a proof of (𝐴 ⇒ 𝐵) ⇒ ( (𝐵 ⇒ 𝐶 ) ⇒ (𝐴 ⇒ 𝐶 ) )
proofo 3 1097 [> 5m] [>273.47] Synthesize a proof of a longer chain of inferences

regex-match 186 Check that a string matches a regex

regex-match 1 214 12723 59.45 Check that a string matches a regex (x100)

regex-match 2 431 77047 178.76 Synthesize a regex that matches a given string as in Section 5.4 (x10)

list-eval 218 1647 9991 6.07 Synthesis within a metacircular evaluator with list functions

quasi-quine 117 1737 25636 14.76 Synthesize a quine that employs quasiquote as in Section 5.4

ground context: Synthesis queries in which a provided sketch of the program or library of helper functions is compiled by staging.

synth-fib 38 945 46440 49.14 Fib function base case from examples (x1000)

synth-fib-larger 43 1797 [> 5m] [>166.94] Fib function accumulators and three holes as in Figure 17

map-eval 251 61 518 8.49 Body of function mapped via anonymous recursion in an evaluator

metaKanren 20 6812 23175 3.40 The recursive call arguments in appendo as in Section 5.3

evalo-map 13 20 58 2.90 The body of a function mapped over several examples

synth-append 9 84 201 2.39 Portion of append from examples as in Figure 3 (x100)

category similarly use fully-ground functions running in evalo-staged, but in these benchmarks

the functions are themselves interpreters for another language, as discussed in Section 5.4. The

benchmarks of the fourth category are synthesis problemswith a provided sketch or library of helper

functions. Staging generates code for the statically-known portions, as described in Section 5.2.

One benchmark shows a slowdown: “replicate-unknown”. The replicate relation is staged with

the expectation that the first argument will be known at staging time. However, this query provides

a fresh logic variable for this argument, which precludes any specialization. The benchmark shows

a slowdown relative to the original, unstaged program because the staged version of the replicate

relation uses partial-apply in the recursion to enable staging. Our partial-application mechanism

adds some overhead, and because in this example there is no benefit to staging, the overhead leads

to a slowdown. All the rest of our benchmarks test situations where staging has some benefit.

Comparison to a Hand-Tuned Relational Interpreter. Table 2 reports benchmarks comparing our

(un)staged relational interpreter to an interpreter that integrates specialized search heuristics.

Byrd et al. [2017, p. 15–16] describe the heuristics in detail. The most important heuristic reorders

parts of the evaluation of a function application. Normally the interpreter evaluates the argument
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Table 2. Our (un)staged interpreter vs. Byrd et al. [2017]’s unstaged interpreter with hand-tuned heuristics.
Barliman tests were conducted under Chez Scheme version 10.1.0.

Name Unstaged Staged Hand-tuned Speedup (Staged vs. Hand-tuned)

proofo 1 0.022s 0.001s 0.20s 200x

proofo 2 0.554s 0.059s 9.12s 155x

synth-fib-larger [> 5m] 1.797s 11.11s 6x

quasi-quine 25.636s 1.737s 119.84s 69x

expressions first, and then the body of the function. The heuristic reverses this order when the

argument expressions are unknown but the body is ground. Other heuristics include deferring

certain non-deterministic goal evaluations, a depth-limited search, and manual weighting of the

interpreter’s main branch. The benefits of these search heuristics are orthogonal to the benefits

of removing interpretive overhead that multi-stage miniKanren provides. The subset of Racket

supported by our relational interpreter differs somewhat from that of Byrd et al. [2017] and the

systems use different host Scheme implementations and versions of miniKanren, so the comparison

is imprecise. Nonetheless the results suggest that staging a straightforward interpreter produces

results competitive to an unstaged interpreter that uses carefully-tuned search heuristics.

Summary. With these results in hand we can summarize the answers to our research questions.

• Q1 Our examples demonstrate that staged versions of a variety of relational programs are

expressible inmulti-stageminiKanren, including interpreters for a subset of Racket, grammars,

and for miniKanren itself (metaKanren). Staging these programs requires adding staging

annotations as well as small refactorings to use partially applied relations.

• Q2 The results in Table 1 indicate that staging is effective at removing overhead introduced

by layers of interpretation. Queries that evaluate ground functions within the evalo-staged
interpreter exhibit speedups between 7x and 87x (the “functions” category in the benchmark

table). Similarly, queries that leverage additional interpreters executing within evalo-staged
all benefit from staging, with speedups between 6x and 178x (the “interpreters” category).

Queries where a sketch or library of helpers can be compiled via staging exhibit speedups

ranging from 2x to 49x (the “ground context” category).

• Q3 Improved run-time performance easily pays for the time cost of staging in the case of

difficult synthesis queries such as “proofo 3”, “regex-match”, “quasi-quine”, “synth-fib-larger”,

and “metaKanren”. For smaller queries that return within a few hundred milliseconds, staging

may not be beneficial unless many queries are made using the same generated code.

7 Related Work

Staged relational programming continues a long line of investigation into multi-stage programming

and related efforts in partial evaluation and metaprogramming [Lilis and Savidis 2019].

Relational Programming. Lozov et al. [2019] and Verbitskaia et al. [2020] explore partial deduction
in the context of a typed miniKanren dialect in OCaml [Kosarev and Boulytchev 2016], We go

further by allowing holes in programs and by supporting higher-order patterns. Lozov et al. [2018]

translate functions to relational programs, but not using staging. Abramov and Glück [2001, 2002]

achieve program inversion via non-standard interpretations and also remove overhead of one layer

of interpretation. In our terminology, they are able to run “backwards” but not with arbitrary holes.

Multi-Stage Programming. Multi-stage programming systems for functional programming lan-

guages include MetaML [Taha and Sheard 2000], MetaOCaml [Kiselyov 2014], Lightweight Modular

Staging [Rompf and Odersky 2010, 2012], and Terra [DeVito et al. 2013]. Our work adapts multi-stage
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programming to the context of relational programming. We require that staging-time evaluation

produces a unique answer via a dynamic check. Systems such as Mercury [Somogyi et al. 1996]

and Ciao Prolog [Bueno et al. 1996] can statically check the determinism of relations. Such a

static property could make correct staged programs easier, but it is unclear how to combine such

reasoning with our fallback feature.

Partial Deduction. The literature on partial evaluation in logic programming (partial deduction)

is vast. The Art of Prolog [Sterling and Shapiro 1994] provides a good introduction in Chapter 18.

Offline partial deduction relies on an intermediate representation in which binding-time annota-

tions serve a similar role to staging annotations, but are automatically inferred by binding-time

analysis [Bruynooghe et al. 1998; Craig et al. 2005]. The tradeoff between multi-stage miniKanren

and partial deduction mirrors the tradeoff between multi-stage functional languages and partial

evaluation: manual staging is less automatic but more predictable.

Leuschel et al. [2004a,b] specialize interpreters in Prolog using offline partial deduction. They rely

on manual annotations rather than the inference that is typical in partial evaluation. A memoization

annotation handles recursion while “binding types” specify which part of an argument to treat

statically vs. dynamically. E.g., the spine of an environment and the variables should be static but

the values dynamic. Our work has a different character as it is geared towards synthesis. We can

fall back to dynamic evaluation, which supports specializing large compiled contexts around a

small interpreted hole. We also leverage interpretation to convert from functions to relations.

Gallagher [1986] applies partial deduction to specialize Prolog meta-interpreters that realize

alternate control strategies such as co-routining conjunction and breadth-first search. The resulting

programs thus leverage those strategies without suffering interpretive overhead.

Synthesis. Solar-Lezama [2008] coined the term “sketching” for synthesis with holes in the pro-

gram to be synthesized, which is similar in spirit to our work. A type-driven approach to sketching

is also possible [Osera and Zdancewic 2015]. Semantics-Guided Synthesis (SemGuS) [Kim et al.

2021] is a framework for program synthesis with user-defined semantics specified in Constrained

Horn Clauses, which resemble relational interpreters. However, existing SemGus implementations

do not specialize to sketches or lift synthesis through nested layers of interpretation.

8 Conclusion

The design of multi-stage miniKanren took several iterations. The initial version allowed pro-

grammers to accumulate code for a later stage but required them to carefully manage fallback

by non-relational inspection of whether terms were ground. Eventually, this experiment led to

a more intuitive design tailored to relational programming, with new constructs to help with

nondeterminism in the first stage as well as compilation of closures. A key feature is automatic

fallback: a staged relation can be used as a code generator during staging or can be deferred entirely

to the runtime, with the semantic correspondence automatically established by erasure of staging

annotations. The new design has been motivated by writing relational interpreters, and has proven

fruitful for other applications including a relational recognizer for context-free grammars.

Multi-stage miniKanren fits within a trend towards more generality and meta-reuse in synthesis

systems; e.g., parameterizing over the object language [Kim et al. 2021; Martins et al. 2019; Polozov

and Gulwani 2015]. We anticipate that our approach to specializing based on partially known

expressions and collapsing added layers of interpretation via staging could be a fruitful technique

for improving performance in other such synthesis systems.
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Artifact Availability

Multi-stage miniKanren is developed as open-source software at https://github.com/namin/staged-

miniKanren. A snapshot of the implementation, our benchmark suite, and instructions for repro-

ducing our results are packaged as an artifact available on Zenodo [Ballantyne et al. 2025].
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