
Mind the Gap:

Artifacts vs Insights in PL Theory

Nada Amin∗ and Tiark Rompf ∗‡

∗EPFL: {first.last}@epfl.ch
‡Oracle Labs: {first.last}@oracle.com

A common template for papers at PL conferences is to present a calculus and
prove some properties such as soundness. How can we assess the value of such
papers? In this talk, we suggest that the most valuable formalization efforts are
those which explore the design space. Soundness results rarely compose (think
let-polymorphism and mutable references), yet real systems need to combine
features and make compromises. Hence, we need to mind the gap: give imple-
mentors of practical systems not just core calculi – polished but of questionable
applicability – but real insights into the trade-offs of the landscape. A good
example is the work of Olivier Danvy and his collaborators on inter-derivation
of semantic artifacts, which exposes deep connections between a large class of
individually proposed evaluators and abstract machines.

In more general terms, we argue that we should have the same standard for
theoretical and practical artifacts. While PL researchers are very well aware that
only limited conclusions can be drawn from individual implemented systems, it
is less widely appreciated that the same holds for individual calculi. Instead of
focusing on the artifacts themselves, we should ask: What insights did we gain
from building them?

We draw from our experience formalizing Dependent Object Types (DOT) –
a core calculus for path-dependent types, which play an essential role in unifying
object and module systems in a language like Scala. At first, we worked top-
down from a polished design, minding the gap to soundness: When we would get
stuck in the proofs, we would look for counterexamples, patch the calculus and
reiterate. Eventually, we switched to a bottom-up exploration, minding the gap
to expressivity: At each iteration, we would design a calculus by small tweaks
to the previous ones, and mechanically prove it sound. Through this process,
we have gained key insights into which combinations of features of our original
calculus pose challenges and identified key trade-off between desirable traits such
as nominality or subtyping transitivity.

In this talk, we argue that papers should expose the sausage factory of design-
ing calculi, and the mine fields in the landscape. We advocate that formalization
efforts should learn from tried and true systems engineering practices: design
top down, implement and test bottom-up, and we argue for tools, such as Twelf,
which enable both mechanizing the metatheory and assessing the expressivity,
using the same model – not only for convenience, but especially for confidence.

POPL OBT 2014 – Off the Beaten Track


