Prolog-Style Meta-Programming miniKanren

NADA AMIN, Harvard University, USA
WILLIAM E. BYRD, University of Alabama at Birmingham, USA
TIARK ROMPF, Purdue University, USA

We bring external reification and reflection facilities to miniKanren, inspired by the traditional applications in Prolog such as
meta-interpreters and partial evaluators. We illustrate meta-programming in relational programming with several examples.

1 INTRODUCTION

Logic programming favors relations over functions, aiming for a high-level declarative style, close to the inference
rules one would write on paper. The appeal is evident. For example, we can write a type checker, and might get a
type inferencer and even type inhabiter for free.

But sometimes, we also want to augment the evaluation of such programs. For example, we would like to get
good error messages when our type inferencer fails. We want to reason about both failures and successes. In case
of success, we may want a proof, i.e. a derivation tree, for why the relation holds. In case of failure, feedback is
even more important, and yet, by default, a logic program that fails is one that returns no answers.

In Prolog, we can customize the execution of logic programs through meta-programming. In the Prolog
community, meta-interpreters have a long tradition. An interpreter for “pure” Prolog clauses, written in Prolog, is
easy to implement and to extend to modify the search strategy, inspect proof trees or investigate failures [17, 18].
More advanced applications of meta-interpreters include partial evaluation [14] and abstract interpretation [4].
These meta-interpreters do not necessarily stick to the “pure” subset themselves, and often exploit the more
imperative features of Prolog.

In this paper, we show how to bring the power of Prolog-style meta-programming to miniKanren, a purely
relational logic programming language embedded in Scheme.

We start with an overview of miniKanren, focusing on its embedded nature (Section 2).

We motivate the use of meta-programming: we would like to write high-level declarative programs, and
customize their execution in certain ways without changing the code. Examples are adding tracing, computing
proof trees, or reasoning about failures. We would also like to choose between different execution models like
depth-first search, interleaving, or tabling. In Prolog, this is usually achieved through meta-interpreters (Section 3).

We show that the essence of meta-interpreters also applies in the embedded setting of miniKanren. Since it
is not reasonable to self-interpret the full meta-language, we leverage deep linguistic reuse on the meta level:
we can use our first-order engine to build program generators that compute first-order “pure” Prolog-like rules,
which are again simple to interpret. But some of the appeal of meta-interpreters is lost because programs need to
be turned into program generators manually. (Section 4).

We show how to use Scheme macros to automate reflection of the clause structures (Section 5).

Authors’ addresses: Nada Amin, namin@seas.harvard.edu, Harvard University, USA; William E. Byrd, webyrd@uab.edu, University of
Alabama at Birmingham, USA; Tiark Rompf, tiark@purdue.edu, Purdue University, USA.

This work is licensed under a Creative Commons “Attribution 4.0 International” license. @ ®

© 2021 Copyright held by the author(s).
miniKanren.org/workshop/2021/8-ART1

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

1 « N.Aminetal

We show how it is possible to reflect back the result of a query into reified clauses and show how it applies to
partial reduction (Section 6).

We present a type debugger for Simply-Typed Lambda Calculus (STLC) as an application of meta-interpreting
a relational type checker. (Section 7).

We discuss related work (Section 8) before concluding (Section 9).

Our code is online at https://github.com/namin/metamk.

2 MINIKANREN AS AN EMBEDDED LANGUAGE IN SCHEME

When embedding a language into an expressive host, we benefit from deep linguistic reuse: we can keep the
embedded language simple by directly exploiting features of the host language. In this section, we illustrate deep
linguistic reuse with miniKanren in Scheme, an embedded logic system which is first-order and and re-uses the
host language for key features such as naming and structuring logic fragments.

As a running example, we model a graph connecting three nodes a, b, c in a cycle. In Prolog, we can model this
graph with a relation, edgeo, listing all the possible edges:

edgeo(a,b).
edgeo(b,c).

::: edgeo(c,a).

In miniKanren, we can define the same relation as a definition in Scheme:

2.1 Relations as Functions

(define (edgeo x y)
(conde
((=x"a) (=y
((==x"b) (==y '
((=x"'c) (=y'

In miniKanren, the relation == unifies two terms. The special form conde is used to produce multiple answers;
logically, it is a disjunction of conjunctions: each clause represents a disjunct, and is independent of the other
clauses, with the goals within a clause acting as the conjuncts.

We can now run a query on the relation we just defined.

(runx (q)
(fresh (x y)
(==q “(,x,y))
(edgeo x y)))

— ((a b) (bc) (ca))

The run form serves as an interface between the host and the embedded language, returning a list of reified
values of the query variable. In miniKanren, the fresh form introduces new logical variables and acts as a
conjunction.

In Prolog, we can naturally define relations recursively, and so too in miniKanren. For example, the relation
patho finds all the paths in the graph.

https://github.com/namin/metamk

Prolog-Style Meta-Programming miniKanren «+ 1

(define (patho x y)

(conde
((edgeo x y)) patho(X,Y) :- edgeo(X,Y).
((fresh (z) patho(X,Y) :- edgeo(X,Z), patho(Z,Y).
(edgeo x z)

(patho z y)))))

(run 10 (q)
(patho 'a q))

— (bcabcabcab)

Here, the query finds all paths starting with a and ending with the query variable. Because there are infinitely
many paths through the cycle, runx would diverge. In sections 4, we show how to cope with this divergence by
changing the evaluation semantics through meta-programming.

2.2 Higher-Order Relations as Higher-Order Functions

In miniKanren, we can exploit higher-order functions (and hence, relations too), parameterizing the relation
patho by the relation edgeo so that it works for any graph:

(define (generic-patho edgeo x y)
(conde
((edgeo x y))
((fresh (z)
(edgeo x z)
(generic-patho edgeo z y)))))

We could also recognize that the patho relation is really just the transitive closure of the edgeo relation, and
use a more general abstraction.

3 WHY META-PROGRAMMING?

Logic programming enables us to concisely describe relations. For example, Figure 1 presents the typing relation
of the simply-typed A-calculus as inference rules as one would write on paper and in miniKanren. The miniKanren
relation closely follows the paper rules. Since the relation is pure, it can be queried with logic variables placed
anywhere, and so this one logic program can serve many purposes: type checking (provide term and type),
type reconstruction (provide term but not type), type inhabitation (provide type but not term), and others. The
rule-case unifications keep track of which inference rule is applied and is used for debugging as we explain
next.

Meta-programming enables us to further extend the uses of a logic program, without compromising its concise
description. For example, we can turn our miniKanren typing relation into a type debugger that generates
derivation trees showing exactly where failures lie. Figure 2 shows such an auto-generated diagnostic. We type
check the program Aay.(ay ag) which has a self-application. The diagnostic points out to a failed unification
(I > T,) # Ty failing because of the “occurs-check”.

In the next section, we explain how to adapt Prolog-style meta-interpreters to miniKanren, which is what enables
applications like the type debugger. After learning from the Prolog tradition, we expose meta-programming
patterns that are particularly well-suited to the embedded setting.

1 « N.Aminetal

(define-rel
(!'-o gamma expr type) () (rule-case)
(matche (expr type)
(x:T)eT (vaR)
_— VAR ((,X ’T)
Thx:T (symbolo x)
(Lookupo “(,x : ,T) gamma)
(== rule-case 'var))
I(x:T)re: T
(aBs)
Trixe:T, —» T, (((lambda (,x) ,e) (,T1 -> ,T2))
('-o “((,x : ,T1l) . ,gamma) e T2)
(== rule-case 'abs))

re:Th - T (((,el ,e2) ,T)
Fhe:Th (apP) (fresh (T1)
Tr(eien):T (!-0 gamma el ‘(,T1 -> ,T))

(!'-0 gamma e2 T1))
(== rule-case 'app))))

Fig. 1. Simply-typed A-calculus: on paper and in miniKanren

VAR VAR
x> (1= |rx: (1 = T) x> (T1=T) | +rx:T (i =T)+Th

[XH(T1:>T2)]|-(XX)JT2
ABs

UFx(xx): (1 =%) =T)

Fig. 2. Failure of self-application in STLC due to “occurs-check”.

4 THE ESSENCE OF PROLOG-STYLE META-INTERPRETERS

Meta-circular interpreters for the combined functional logic system seem difficult, since it would be unwieldy to
self-interpret the meta-language. The key idea out of this dilemma is that deep linguistic reuse also applies on the
meta level. Just as we can get away with a first-order engine for regular computation, we can use our first-order
engine to build program generators that compute first-order “pure” Prolog-like rules, which are easy to interpret.

A clause in Prolog consists of a “head” (the left-hand side), and a “tail” or “body” (the right-hand side, possibly
empty). One interpretation of a clause reads: to show the “head”, it suffices to show the “body”. In order to
interpret a clause, we need to reify it, i.e. represent it as a data structure. Prolog provides some built-in constructs
for this, but we can also do it manually, and partially select what we reify.

The technique we use is to turn individual rules into rule generators, that, when run, produce a reified version
of the original rule. For example, we can choose to reify the patho relation, turning the recursive calls into data,
while eagerly evaluating the edgeo goals within:

patho_clause(patho(X,Y), []) :- edgeo(X,Y).
patho_clause(patho(X,Y), [patho(Z,Y)]) :- edgeo(X,Z).

Prolog-Style Meta-Programming miniKanren «+ 1

Here is the miniKanren version of the same manual conversion of the patho program into a program generator,
patho-clause, that produces the original program as data:

(define (patho-clause head tail)
(fresh (x vy)
(== head ‘(patho ,x ,y))
(conde
((edgeo x y) (== tail '()))
((fresh (z)
(edgeo x z)
(== tail ‘((patho ,z ,y))))))))

(runx (q)
(fresh (head tail)
(== q ‘(to prove ,head prove ,tail))
(patho-clause head tail)))
— ((to prove (patho a b) prove ())
(to prove (patho b c) prove ())
(to prove (patho a _.0) prove ((patho b _.0)))
(to prove (patho c a) prove ())
(to prove (patho b _.0) prove ((patho c _.0)))
(to prove (patho ¢ _.0) prove ((patho a _.0))))

We can see that, since edgeo has been left as-is, patho-clause actually produces variants of the patho rules
that are partially evaluating with respect to the edgeo relation. Indeed, for example, to show a path from g, it
suffices to show a path from b, since there is an edge from a to b. Of course, this manual conversion process is
rather tedious, and we discuss how to automate it in Scheme (Section 5).

Reifying both the edgeo and patho relations gives us a direct data analog of the original Prolog clauses for
patho:

(runx (q) (fresh (head tail)

(== q ‘(to prove ,head prove ,tail)) (patho-full-clause head tail)))
<— ((to prove (patho _.0 _.1) prove ((edgeo _.0 _.1)))

(to prove (patho _.0 _.1) prove ((edgeo _.0 _.2) (patho _.2 _.1))))

Now that we have reified clauses, we can interpret them. We consider a few interpreter implementations for
reified clauses next.

4.1 Vanilla Interpreter

The vanilla interpreter takes a clause higher-order relation, such as patho-clause, and returns a solver, which
takes a list of reified goals, constraining them to hold. Implementation-wise, the solver is just another miniKanren
program: if the list of goals is empty, then we’re done; otherwise, we recursively solve the first goal, then the
remaining goals.

1 « N.Aminetal

(define (vanillax clause)
(define (solvex goals)

(conde
((==goals '())) (run 10 (q)
((fresh (g gs body) ((vanillax patho-clause)
(== (cons g gs) goals) ‘((patho a ,q))))
(clause g body) ~— (bcabcabcahb)

(solvex body)
(solvex gs)))))
solvex)

Running the vanilla interpreter on the same query as previously (all the paths from a) gives the same result,
cycling through all the nodes ad infinitum.

4.2 Tracing Interpreter

The vanilla interpreter often serves as a starting point to then augment the interpretation with a feature. Here,

we add tracing. The parameters trace-in and trace-out accumulates the current trace at the beginning and end
of the solvex call.

(define (tracerx clause)

(define (solvex goals trace-in trace-out) (run 4 (q) (fresh (y t)
(conde (==q ‘(,y ,1))
((== goals '()) ((tracerx patho-clause)
== trace-in trace-out)) ‘(patho a ,y) t)))
((fresh (g gs body trace-out-body) — ((b ((patho a b)))
(== (cons g gs) goals) (c ((patho b c) (patho a c)))
(clause g body) (a ((patho c a) (patho b a)
(solvex body (cons g trace-in) trace-out-body) (patho a a)))
(solvex gs trace-out-body trace-out))))) (b ((patho a b) (patho c b)
(Lambda (goal t) (patho b b) (patho a b))))

(solvex (list goal) '() t)))

4.3 Cycle Detection and Other Extensions

Now, that we have a trace of the goals we step through as we find a path, we can also choose to fail when we are
stepping through the same goal again: in effect, detecting cycles. The only change to the tracer interpreter is to
add an absento constraint, (absento g trace-in), which relationally enforces that its first argument does not
occur in its second, just before the (clause g body) line.

e, vy — (b ((patho a b))

(c ((patho b c) (patho a c)))
((cycler* patho-clause)
‘(patho a ,y) 1)) (a ((patho c a) (patho b a) (patho a a))))

In a similar way, we can extend the tracing interpreter to build up proof trees or make failures explicit.

5 AUTOMATING REIFICATION

In Prolog, meta-interpreters are convenient thanks to reflective built-ins which automate reification, the process
of turning Prolog clauses into Prolog data. How can we achieve the same convenience in our embedded setting?

Prolog-Style Meta-Programming miniKanren «+ 1

As a first attempt, we build a Scheme macro, define-rel, that lexically reifies a program: it is used around the

definition of a miniKanren relation, such as patho, to auto-generate reified clauses such as patho-clause and
patho-full-clause

(define-rel (patho x y)
((patho-clause patho) (patho-full-clause patho edgeo))
()
(conde ((edgeo x y)) ((fresh (z) (edgeo x z) (patho z y)))))

For each relation to reify, the macro lexically redefines it to add a representation of the call to the tail (instead
of executing the underlying call):

(define-syntax define-rel
(syntax-rules ()
((L (id ax ...) ((cid* r* ...) ...) (xx ...) body)
(begin
(define (id ax ...) (fresh-if-needed (x* ...) body))
(define (cidx head tail xx ...)
(define rx (lambda args (snoco tail ‘(r* . ,args)))) ...
(fresh () (fresh (ax ...) (== head ‘(id ,a*x ...)) body) (closeo tail))) ...
(void)))))

6 REFLECTION FOR PARTIAL REDUCTION

We reproduce the partial reduction example and system of Sections 18.1 and 18.2 of the Art of Prolog [17]. A
partial reduction system explores the goals, and unfolds them, or folds them, according to user-given directives.

(define (preducex clause)
(define (solvex goals residues)
(conde
((== goals '()) (== residues '()))
((fresh (g gs)
(== (cons g gs) goals)
(conde

((fresh (a b ra rb rba rs)
(== ‘(<- ,a ,b) g)
== ‘(<- ,ra ,rb) rba)
== (cons rba rs) residues)
(solvex b rb)
(solvex (list a) ra)
(solvex gs rs)))

((fresh (r rs)
== (cons r rs) residues)
(should-fold g r)
(solvex gs rs)))

((should-unfold g)

(fresh (b rb rs)
(clause g b)
(appendo rb rs residues)
(solvex b rb)
(solvex gs rs))))))))

solvex)

1 « N.Aminetal

The Non-Deterministic Finite Automaton (NDFA) example implements a small interpreter that accepts a word
according to rules specified per automaton using initial states, delta transitions and final states.

(define-rel (accept xs)
((accept-clause accept accept2 initial delta final)) ()
(fresh (q)
(initial q)
(accept2 xs q)))
(define-rel (accept2 xs q)
((accept2-clause accept2 initial delta final)) ()
(conde
((fresh (x xr ql)
(== (cons x Xr) Xs)
(delta q x ql)
(accept2 xr ql)))
((==xs '())
(final q))))

We build an NDFA that accepts that language (ab) *.

(define-rel (initial g) ((initial-clause initial)) () (== q 'q0))
(define-rel (final q) ((final-clause final)) () (== q 'q0))
(define-rel (delta ga c gb) ((delta-clause delta)) ()
(conde
((==qa 'q0) (== c 'a) (==qgb 'ql))
((==qa 'ql) (== c 'b) (== qb 'g0))))

For the fold and unfold annotations used by the partial reduction system, we unfold the rules that are specific
to the automaton, and fold the general rules to be specialized.

(define (should-fold g r)
(fresh (x y)
(conde
((==g "(accept2 ,x ,y))
= r ‘(ab2 ,x ,y)))
((==g ‘(accept ,x))
==r ‘(ab ,x))))))
(define (should-unfold g)
(fresh (x y z)
(conde
((==g ‘(initial ,x)))
((==g ‘(final ,x)))
((==g '(delta ,x ,y ,2))))))

The general clauses that all together form the initial program to partially reduce.

‘

(define (ndfa-pclause a b)
(fresh (x y z)
(conde
((== ‘(accept ,x) a)
(accept-clause a b))
((== ‘(accept2 ,x ,y) a)
(accept2-clause a b)))))

Prolog-Style Meta-Programming miniKanren «+ 1

We automate the process of reflecting the result of running the clauses back into an object program. Here is
the main routine:

(define (refl-prog pclause)
(let ((program-obj
(runx (q)
(fresh (a b)
(==q (list '<- a b))
(pclause a b)))))
(let ((gq (reify-prog program-obj)))
(eval ‘(lambda (p) ,(q 'p))))))

We explain this reflection routine by example:

(define (ndfa-program p)
((refl-prog ndfa-pclause) p))
ndfa-program «—
"(((<- (accept _.0) ((initial _.1) (accept2 _.0 _.1)))
(<- (accept2 () _.2) ((final _.2)))
(<- (accept2 (.3 . _.4) _.5)
((delta _.5 _.3 _.6) (accept2 _.4 _.6))))))

;; Step 1
(runx (q)
(fresh (a b)
(==q (list '<- a b))
(pclause a b))) —
"((<- (accept _.0) ((initial _.1) (accept2 _.0 _.1)))
(<- (accept2 () _.0) ((final _.0)))
(<- (accept2 (.0 . _.1) _.2)
((delta _.2 _.0 _.3) (accept2 _.1 _.3))))

;; Step 2 by reify-prog on result of step 1
;}
(fresh (_.0 _.1 _.2 _.3 _.4 _.5 _.6)
(== p
‘((<- (accept ,_.0) ((initial ,_.1) (accept2 ,_.0 ,_.1)))
(<- (accept2 () ,_.2) ((final ,_.2)))
(<- (accept2 (,_.3 . ,_.4) ,_.5)
((delta _.5 _.3 _.6) (accept2 _.4 _.6))))))

Finally, the reduction in action:

(run 1 (q)
(fresh (p)
(ndfa-program p)
((preducex ndfa-clause)
p
q))) —
"(((<- ((ab -.0)) ((ab2 _.0 g0)))
(<- ((ab2 () q0)) ())
(<- ((ab2 (a . _.1) g0)) ((ab2 _.1 q1))))))

1 « N.Aminetal

The result is a program specialized to a particular NDFA without interpretation overhead.

7 APPLICATION: TYPE DEBUGGER

The advantage of writing a reified relation is that we can now inspect its inner workings through meta-
programming.

We present a meta-interpreter that pinpoints a failure in a derivation tree.

It can be used to draw the annotated failed derivation of Figure 2 when ran on the clauses of Figure 1.

(define (proofdebug* clause)
(define (solvex goals proof ok)
(conde
((== goals '())
== proof '()))
((fresh (first-goal other-goals first-body body-proof other-proof rule-case)
(== (cons first-goal other-goals) goals)
(conda
((clause first-goal first-body rule-case)
(== ‘((,first-goal ,rule-case <-- ,body-proof) . ,other-proof) proof)
(solvex first-body body-proof ok))

((== *((,first-goal error) . ,other-proof) proof)
(== ok #f)))
(solvex other-goals other-proof ok)))))

solvex)

(define (proofdebug clause)
(let ((solvex (proofdebug* clause)))
(Lambda (goal proof ok)
(fresh ()
(solvex (list goal) proof ok)
(conda
((== ok #t))
((== ok #f)))))))

Thus meta-interpreters extend the benefits of purely relational programming to reasoning about derivations.

8 RELATED WORK

There is a long tradition of meta-programming in Prolog, going back at least to the early 1980s. Warren [19],
O’Keefe [12], and Naish [11] discuss how to express higher-order “meta-predicates” inspired by functional
programming, such as map and fold; O’Keefe uses Prolog’s standard call operator, while Warren and and Naish
advocate using an apply operator closer in spirit to Lisp. Warren claims that A-terms are neither necessary nor
desirable for higher-order programming in Prolog, arguing that passing the names of top-level predicates to
meta-predicates is the best tradeoff between expressivity and keeping the Prolog language simple. Naish believes
that apply is a more natural construct for higher-order programming than Prolog’s traditional call operator, and
claims that reliance on call by the logic languages Mercury [15] and HiLog [2] make higher-order programming
in those languages awkward. Our host language Scheme support A-terms and apply—we therefore inherit both
the expressivity and the complexity of these language features.

According to Martens and de Schreye [10], interest in Prolog meta-interpreters was spurred by two articles [1, 6]
from a 1982 collection edited by Clark and Térnlund. Introductory books on Prolog [12, 17] further popularized
meta-interpreters, which are now considered a standard approach to Prolog meta-programming. Hill and Lloyd

Prolog-Style Meta-Programming miniKanren «+ 1

claim that meta-interpreters in Prolog are fatally flawed, since they often use non-declarative features, and
since it can be difficult to assign a semantics to untyped, unground logic programs; their strongly statically
typed functional-logic-constraint language Gédel [8] (and Lloyd’s followup language, Escher [9]) is specifically
designed for declarative meta-programming. Martens and de Schreye [10] defend Prolog-style meta-interpreters,
arguing that all forms of untyped logic programming have the same issues that Hill and Lloyd point out, but that
reasonable semantics can be applied to meta-programming in untyped logic languages.

There is also a long history of trying to combine functional programming and logic programming, once again
going back to the early 1980s. There have been many attempts to embed a Prolog-like language in Lisp [5, 7, 13],
and more recently, in Haskell [3, 16]; to our knowledge, there is no work in the literature on how to best write
meta-interpreters for these embedded languages.

9 CONCLUSION

In this paper, we have shown how to handle Prolog-style meta-programming in miniKanren. Like in the Prolog
tradition of meta-interpreters, these techniques enable transforming the evaluation of a logic program without
complicating its description. In the embedded setting, we have the choice of meta-programming within the
embedded language, or stepping out to the host language. By embracing this flexibility, we gain simplicity: the
embedded logic language remains “pure” and first-order, tailored for relational programming.

REFERENCES

[1] K. A. Bowen and R. A. Kowalski. 1982. Amalgamating Logic and Metalanguage in Logic Programming. In Logic Programming, K. L.
Clark and S.-. Tarnlund (Eds.). Academic Press, 153-172.
[2] Weidong Chen, Michael Kifer, and David Scott Warren. 1993. HiLog: A Foundation for Higher-Order Logic Programming. 7 Log.
Program. 15, 3 (1993), 187-230. http://dblp.uni-trier.de/db/journals/jlp/jlp15.html#ChenKW93
[3] Koen Claessen and Peter Ljungldf. 2000. Typed Logical Variables in Haskell. Electr. Notes Theor. Comput. Sci. 41, 1 (2000), 37. http:
//dblp.uni-trier.de/db/journals/entcs/entcs41.html#ClaessenL00
[4] Michael Codish and Harald Sendergaard. 2002. Meta-circular Abstract Interpretation in Prolog. In The Essence of Computation. Springer
Berlin Heidelberg, 109-134.
[5] Matthias Felleisen. 1985. Transliterating Prolog into Scheme. Technical Report 182. Indiana University Computer Science Department.
[6] H. Gallaire and C. Lasserre. 1982. Metalevel control of logic programs. In Logic Programming, K. L. Clark and S.-. Tarnlund (Eds.).
Academic Press, 173-185.
[7] Christopher T. Haynes. 1987. Logic Continuations. J. Log. Program. 4, 2 (1987), 157-176.
[8] Patricia M. Hill and John W. Lloyd. 1994. The Gédel programming language. MIT Press.
[9] J. W. Lloyd. 1995. Declarative Programming in Escher. Technical Report CSTR-95-013. Department of Computer Science, University of
Bristol.
[10] Bern Martens and Danny de Schreye. 1995. Why untyped nonground metaprogramming is not (much of) a problem. Journal of Logic
Programming 22, 1 (Jan. 1995), 47-99.
[11] Lee Naish. 1996. Higher-order logic programming in Prolog. Technical Report 96/2. University of Melbourne.
[12] Richard A. O’Keefe. 1990. The Craft of Prolog. MIT Press, Cambridge, MA, USA.
[13] J. A. Robinson and E. E. Sibert. 1982. LOGLISP: an alternative to PROLOG. In Machine Intelligence 10,].E. Hayes, Donald Michie, and
Y-H. Pao (Eds.). Ellis Horwood Ltd., 399-419.
[14] Dan Sahlin. 1991. An automatic partial evaluator for full PROLOG. Ph.D. Dissertation. The Royal Institute of Technology, Stockholm,
Sweden.
[15] Z. Somogyi, F. J. Henderson, and T. C. Conway. 1995. Mercury, an Efficient Purely Declarative Logic Programming Language. In
Proceedings of the Australian Computer Science Conference. 499-512.
[16] J. M. Spivey and S. Seres. 1999. Embedding Prolog in Haskell. In Proc. of the 1999 Haskell Workshop (Technical Report UU-CS-1999-28,
Department of Computer Science, University of Utrecht), E. Meijer (Ed.).
[17] Leon Sterling and Ehud Shapiro. 1994. The Art of Prolog (2nd Ed.): Advanced Programming Techniques. MIT Press, Cambridge, MA, USA.
[18] Leon Sterling and L. Umit Yalcinalp. 1989. Explaining Prolog Based Expert Systems Using a Layered Meta-interpreter (IJCAI'89). 66-71.
[19] David H. D. Warren. 1982. Higher-order extensions to Prolog: are they needed? In Machine Intelligence 10,].E. Hayes, Donald Michie,
and Y-H. Pao (Eds.). Ellis Horwood Ltd., 441-454.

[t/

=

=

http://dblp.uni-trier.de/db/journals/jlp/jlp15.html#ChenKW93
http://dblp.uni-trier.de/db/journals/entcs/entcs41.html#ClaessenL00
http://dblp.uni-trier.de/db/journals/entcs/entcs41.html#ClaessenL00

	Abstract
	1 Introduction
	2 miniKanren as an embedded language in Scheme
	2.1 Relations as Functions
	2.2 Higher-Order Relations as Higher-Order Functions

	3 Why Meta-Programming?
	4 The Essence of Prolog-Style Meta-Interpreters
	4.1 Vanilla Interpreter
	4.2 Tracing Interpreter
	4.3 Cycle Detection and Other Extensions

	5 Automating Reification
	6 Reflection for Partial Reduction
	7 Application: Type Debugger
	8 Related Work
	9 Conclusion
	References

