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Abstract

We propose a new technique for ahead-of-time detection of
side channel information leaks through the use of staged,
instrumented interpreters. It is well-known that a staged
interpreter acts as a compiler. By equipping such an inter-
preter with a runtime step counter, the timing behavior of
the target program becomes a first-class value in the residue,
to be analyzed by any number of classical methods. Finally,
we demonstrate the power of our technique against naive,
cache-based and speculation-based timing attacks using an

off-the-shelf bounded model checker.
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1 Introduction

Side channel attacks are a persistent thorn in the side of the
computer security community, with new methods of leak-
ing information through increasingly esoteric attack vectors
published every year. These attacks exploit unintended in-
formation channels such as power consumption, electromag-
netic radiation, acoustic emanations and so on. Side channel
leakages are especially dangerous because they ignore tradi-
tional software security measures and leave little trace when
utilized.

Given the vast diversity of environments in which pro-
grams are executed, accounting for all potential side chan-
nels through traditional testing or mitigation techniques
quickly becomes infeasible. Formal methods offer a way out
by ruling out entire classes of vulnerabilities in a systematic
and verifiable way. Unfortunately, manually developing for-
mal security models for modern systems is challenging and
error-prone, as contemporary program stacks are designed
to abstract away the very low-level details that give rise to
side channels in the first place.

Recent work in hardware-aware specification has intro-
duced software-hardware contracts [11] as a way to define the
responsibilities of each side of the software-hardware divide.
Specifically, a software-hardware contract asserts that, so
long as the software obeys a given set of constraints, the
hardware mechanism in question will not induce any fur-
ther information leakage. However, hardware mechanisms
tend to be complex and detail-oriented, requiring many iter-
ations of candidate contracts before the correct contract is
discovered. Without a lightweight means of verifying a given
design, it may become too costly to check every combination.

In this paper, we propose the use of Collapsing Towers
of Interpreters [1] (henceforth just “collapsing towers”) as a
means to cheaply verify whether a given software-hardware
design satisfies a given security property. Collapsing towers
is a technique utilizing the Futamura projections [8, 9] to
compile a program running atop a stack of interpreters into
a single program exhibiting the semantics of the entire sys-
tem. For our purposes, the interpreter stack in question is a
surface program expressed via a processor’s ISA (Instruction
Set Architecture), which is in turn running on some complex
hardware pipeline. The collapsed output (the residue) is a C
program with all microarchitectural effects surfaced, which
can then be analyzed with any off-the-shelf C analysis. Im-
portantly, any verification annotations can be added through
the compilation process — the developer does not need to
adjust the original source at all, beyond isolating the critical
section.

Our contributions are as follows:

e We describe a novel methodology for side-channel
analysis via collapsing towers to combine high-level
evaluation semantics with low-level timing minutiae
to construct timing-aware models.
Starting from a simple assembly language, we show
how a naive interpreter can be staged and instrumented
such that the timing behavior of the surface program
is reflected as first-order C code to be analyzed by an
off-the-shelf bounded model checker.
e We demonstrate how to extend the base interpreter
such that the same analysis can be performed against
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classical, cache-based and speculation-based timing
attacks.

The full version of our implementation can be found in
our repository.

2 Invisible Semantics

Ahead-of-time detection of timing leaks is particularly tricky
because the minutiae of modern hardware is deliberately
kept hidden from the software running on it. Rather than
manipulate the hardware’s capabilities directly, program-
mers interact with hardware through an abstracted ISA that
presents the illusion of linear instruction execution. In other
words, the timing behavior of the overall software-hardware
system is defined by both the visible semantics of the ISA
and the invisible semantics of the underlying hardware state.

In the rest of this section, we review relevant background
of microarchitecture-induced timing side channels and dis-
cuss how they arise from gaps between visible and invisible
semantics. We then give an overview of staging and outline
our approach to using interpreter specialization as a means
to bring invisible semantics to the forefront.

2.1 Side channels arise from invisible semantics

As previously mentioned, today’s processors only present
the illusion of well-ordered instruction execution. Modern
processors will hide latency induced by busy or slow execu-
tion units by looking ahead of the logical program counter
for instructions that don’t depend on operations currently
in-flight so that multiple instructions can be executed con-
currently.

Of particular importance for timing-based side channels
is branch prediction, in which a processor will guess the
direction of a conditional branch to continue lookahead pro-
cessing without needing to wait for the true result. If the
prediction turns out to be wrong, any in-flight speculative
instructions need to be flushed (instead of being committed
to the ISA state), causing measurable slowdown.

Consider the program in Fig. 1, adapted from Cauligi et al.
[4]. According to the software (visible) semantics, this pro-
gram is certainly secure — the private memory is not accessed
at all! On a machine with speculative execution and caching,
however, the branch may be speculatively taken even though
the guard x1 < 8 is false, causing a speculative access to the
out-of-bounds cell pub[9]. If the program memory layout
happens to be such that the address of pub[9] falls within
the priv array, the phantom read will be reading a private
value! The hardware cache will then obligingly store the pri-
vate phantom value, allowing it to be exfiltrated by a clever
attacker.

2.2 Seeing the invisible via interpreter specialization

How might we have caught this? The private memory access
occurs through not just an out-of-bounds read, but a phan-
tom out-of-bounds read, rendering it undetectable by many
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int pub[8];
int priv[8];
int x1 = 9;
if (x1 <8) {
int x2 = pub[x1];
6 int x3 = pub[x2];

W N =

w

Figure 1. A sample SPECTRE vulnerability.

constant-time disciplines such as FaCT [5]. One approach
would be to design an analysis to be aware of the hardware
(invisible) semantics directly, by hand-constructing some
abstract machine with an explicit model of each invisible
feature as desired [4, 10].

We view the problem differently. Instead of designing new
analyses for each invisible feature, we would like to make in-
visible semantics visible to existing analyses by transforming
the input program to include the desired hardware details.

Consider a typical interpreter taking a program and an
environment. If the interpreter is then specialized to a partic-
ular input program, it becomes a compiler. This is known as
the first Futamura projection [8, 9]. Amin and Rompf [1] ob-
served that, if an interpreter is instrumented with additional
runtime metadata (such as, say, a timer and a simulated mem-
ory cache), that instrumentation will be reflected into the
residue as flat, first-order code, where it can be independently
analyzed with classical techniques [2].

This suggests another path forward: Write an interpreter
according to the invisible hardware semantics, then stage
it, forming a “hardware semantic compiler”. Running this
compiler on an input program will collapse the software-
hardware tower, producing a residual program (the residue)
describing the exact behavior of the hardware when run-
ning the program in question. Now, the software-hardware
contract can be expressed purely in terms of visible objects
in the residue, so we can enforce it with any appropriate
off-the-shelf tool.

An additional benefit of using a collapsing-towers ap-
proach is that interpreters are generally easier to write than
compilers or static analyzers, so composing interpreter fea-
tures should also be easier than designing the corresponding
combined analysis from scratch. Indeed, in the next section,
we show how caching and speculation can be added to the
staged interpreter without needing to explicitly specify how
the two features interact.

The rest of this paper describes how we build the staged
hardware interpreter to be easily extensible and such that
the residue is amenable to analysis.
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3 Proof of Concept: Collapsing the
software-hardware tower

For our demonstrations, we use a subset of RISC-V as our
surface language (which we dub nanoRISC) featuring only
arithmetic, memory and branching.

The Scala definitions for nanoRISC (which will also serve
to define the visible semantics) can be found in Fig. 2, where
get_reg, (etc) perform the usual lookups against the mem-
bers of StateT. These are left abstract (rather than accessing
s.regs directly) so they can be overridden by interpreter
variants that wish to implement a more involved semantics.

1| case object Eq extends Cmp // ...

case object Add extends Op // ...

case class Reg(i: Int) extends Operand

case class Immediate(i: Int) extends Operand

5| abstract sealed class Instr

+| case class Mov(dst:Reg, src:Operand)

7| extends Instr

s| case class Binop(op:Op,dst:Reg,s1:Reg,s2:0perand)
o| extends Instr

10| case class Load(dst:Reg, src:Reg, offs:Operand)
11 extends Instr

12| case class Store(dst:Reg, src:Reg, offs:Operand)
13| extends Instr

14| case class B(cmp:Option[(Cmp,Reg,Operand)],t:Addr)
15| extends Instr

16| val prog: Vector[Instr]

17| def get_reg(s: StateT, r: Reg): Int = // ...

13| def get_mem(s: StateT, i: Int): Int = // ...

19| def eval_op(op:0p,il:Int,i2:Int): Int = // ...

20| def execute(i: Int, s: StateT) =

21 prog(i) match {

22| case Mov(dst, src) => {

23 set_reg(s, dst, src)

24 execute(i+1, s) }

25| case Binop(op, dst, srcl, src2) => {

26 set_reg(s, dst, eval_op(s,op,srcl,src2))

27 execute(i+1, s) }

23| case Load(dst, src, offs) => {

29 set_reg(s, dst, get_mem(s,get_reg(s,src)+offs)
)

30 execute(i+1, s) }

31 case Store(dst, src, offs) => {

32 set_mem(s, get_reg(s,src)+offs, get_reg(s,dst)
)

33 execute(i+1, s) }

34 case B(None, tgt) => execute(tgt, s)

35 case B(Some((cmp, srcl, src2)), tgt) =>

36 if (eval_cmp(s, cmp, srcl, src2)) {

37 execute(tgt, s)

38 } else {

39 execute(i+l, s) } }

o

Figure 2. A definitional interpreter for nanoRISC
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3.1 The naive staged interpreter

Our implementation uses the Lightweight Modular Staging
(LMS) [13] framework for staging. LMS-based staged pro-
grams specify binding times via type annotations: the type
Rep[T] denotes a value of type T only known in the residue
(dynamic), while a bare type T denotes a value known during
staging (static). The staged version of this interpreter adds
the annotation Rep to the state parameter s and the result
type of execute, marking that they are only known to the
residue runtime (Fig. 3). We also replace the recursive calls
to execute with an additional function call (elided) track-
ing which instructions have already been emitted to reduce
duplication in the residue.

def execute(i: Int, s: Rep[StateT]): Rep[Unit] = {
s.timer += 1 // *

3| prog(i) match {

4 /] ...

5 case Binop(op, dst, srcl, src2) => {

6 set_reg(s, dst, eval_op(s,op,srcl,src2))

call(i+1, s) // execute changed to call here

o

4
9 /...
0|} 3}

Figure 3. The nanoRISC interpreter, staged

Consider a sample surface program (Fig. 4a) and its residue
(Fig. 4b), the output of calling the staged interpreter. As our
end-level analysis, we use the off-the-shelf C Bounded Model
Checker (CBMC) [12] to enforce a noninterference property
between the program’s running time and any secret memory.
Notably, CBMC is not actually a timing-aware model checker,
which is precisely the point of collapsing towers — the residue
makes time explicit as an ordinary C value, so CBMC can
routinely reason about it. Concretely, we equip the StateT
struct with a cycle counter that is incremented in the main
interpreter loop (the marked line in Fig. 3), which will then
be reflected as first-order code in the residue (marked lines
in Fig. 4b).

Finally, our compiler wraps the generated code with a
hand-written driver that uses CBMC primitives to check
noninterference (Fig. 5).

This is already sufficient to expose basic timing informa-
tion to CBMC. However, we aren’t yet ready to find the
timing leak in Fig. 4b, which requires both caching and spec-
ulation, which we detail next.

3.2 Caching and Speculation

We earlier claimed that a major advantage of using collapsing
towers is that it is easy to amend the analysis to use a more
complex model. In Fig. 6, we equip the naive interpreter with
a two-entry LRU cache keyed by memory address.



PEPM, January 2025, Denver, CO, USA

1| mov r3, #pub

2{mov r@, #priv-pub

3| bge ro, #priv-pub, rest // x5
4/ 1dr r1, [r3, rol] // x3

s|1dr r2, [r1]

o| rest:

Figure 4a. The nanoRISC source

1| int main(int argc, char *argv[]) {
struct StateT statel, state2;
initialize(&statel);

4 initialize(&state2);

s|  for (int i=PRIVATE_MEM_START; i<MEM_MAX; i++) {
6 statel.memory[i] = bounded(@,20);

7 state2.memory[i] = bounded(@,20); }
3| statel = Snippet(statel);

9| state2 = Snippet(state2);

10| __CPROVER_assert(

11 statel.timer == state2.timer,

12 "no timing leak");

13 return 0; }

o

Figure 5. Enforcing noninterference in the residue

class StateT {
regs, memory, ...,
3| cache_keys, cache_values}
4| override def get_mem(s: Rep[StateT], addr: Rep[Int
D:
5 Rep[Int] = {
6 if (s.cache_keys(@) == addr) {
7 // ... address is in cache, return value ...
8 return s.cache_vals(0)
9 } else if (s.cache_keys(1) == addr) {
10 // ... swap entries ...
11 } else {
12 // address not in cache
13 // ... evict oldest ...
14 // Reading from MMU is expensive, increase
15 // timer accordingly
16 s.timer += 100

171} }

Figure 6. Adjusting the interpreter to model the cache

Here, we take advantage of the fact that the base inter-
preter (Fig. 2) uses abstract get_mem and set_mem operations.
Importantly, by hijacking just the memory lookup operations,
we ensure that non-memory operations can fall back to the
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/7 ...
struct StateT x3(struct StateT x4) {
x4.timer = x4.timer + 1; // *
x4.regs[1] = x4.mem[x4.regs[3] + x4.regs[0]];
return x1(x4); }
;| struct StateT x5(struct StateT x6) {
x6.timer = x6.timer + 1; // *
8 return x6.regs[@] >= 8 ? x6 :
ol // ...
struct StateT Snippet(struct StateT x0) {
return x9(x0); }

x3(x6); }

1C

Figure 4b. Residue via the staged interpreter of Fig. 3

base timing model, only further adjusting the timer on cache
miss. With this change (and the corresponding change to
set_mem), our residue now models enough of the cache to
detect the classic Evict + Time attack on AES[3, 15].

Because speculation changes control flow, we must instead
override the execute function to intercept branch instruc-
tions (Fig. 7), falling back to super.execute appropriately.

The speculation driver in Fig. 7 also demonstrates the use
of stage-time state to simplify the residue. The top-level in-
terpreter knows whether the current instruction is being ex-
ecuted speculatively (via the stage-time inBranch variable),
and instead simply emits code corresponding to a rollback at
the appropriate point (line 25 in Fig. 8). Performing checks at
staging time when possible means fewer additional variables
in the residue, which limits the potential for path explosion
beyond paths present in the original input.

Specializing the new interpreter to Fig. 4a gives the residue
in Fig. 8. Here we can see the cache logic and a rollback from
a mis-predicted branch both represented. Running CBMC
against the residue in Fig. 8 now rejects, as desired.

3.3 Discussion

We have shown the end-to-end construction of a staged
nanoRISC processor for microarchitectural side-channel anal-
ysis. Our approach starts from the obvious, naive interpreter
and extends it to include caching and speculation. We again
highlight the separation of concerns present in this imple-
mentation — the caching and speculation implementations
are orthogonal and do not need to be explicitly aware of each
other, yet the final result exhibits the desired vulnerability
that arises from the interaction of the two.

4 Related Work

Staged programming. The use of staged interpreters to
ease analysis has been explored in a series of prior work [7,
14, 17] also using the LMS framework. A common thread in
existing work is that many properties of interest are more
naturally expressed at runtime, and the Futamura projections
allow us to model those properties at compile-time “for free”.
Our work applies the same methodology to locating side
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1| // No further change to StateT!
var inBranch: Option[Instr]

;| override def execute(i: Int, s:
4 Rep[Unit] = {

5 s.timer += 1

6| inBranch match {

7 case None =>

8 // not currently speculating

9 (i < prog.length, prog(i)) match {

10 case (true, B(Some(cnd), tgt))

1 // current instruction is branch, guess
12 // that branch is not taken and execute
13 // next instruction

14 if tgt.unAddr > i => {

15 inBranch = Some(B(Some(cnd), tgt))

16 call(i+1, s) }

17 case _ => super.execute(i, s) }

18 case Some(Branch(rs, target)) => {

19 // speculation in progress ...

20 if (i == target) {

21 inBranch = None

o

Rep[StateT]):

22 // If branch was taken, rollback

23 if (eval_cmp(s,cmp,srcl,src2)) {

24 rollback(s)

25 // resume execution from rolled-back
26 // state

27 call(tgt.unAddr, s)

28 }

29 /] ...

30 } else if (i < prog.length) {

31 prog(i) match {

32 case Load(rd, im, rs) if rd !=rs => {
33 saveForRollback(s, Load(rd,im,r))

34 super.execute(i,s)

35 }

36 /] ...

7133}

Figure 7. Adjusting the interpreter for speculation

channels, using LMS to model a runtime dynamic property
(namely, running time) to make it accessible to off-the-shelf
static analysis tools.

Spectre-aware side channel analysis. Existing approaches
to ahead-of-time discovery of microarchitectural vulnerabili-
ties broadly fall into two categories — static analysis of some
surface-level code using a formalization of the channel in
question, or statistical analysis through fuzzing or machine
learning.

We have already discussed Spectre-aware side channel
analyses [4, 10] in Section 2.2, which fall into the former cat-
egory. We generalize the idea approaches by effectively using
the hardware interpreter itself to construct a new model by
fusing the hardware semantics into the target program before
analysis. Other work in this area includes CacheAudit [6],
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/7 ...

2| int x8 = x2.cache_keys[0@] == x7 ?

3| x2.cache_vals[0] : (x2.cache_keys[1] == x7 ? ({
4 // Push memory access to top of LRU

5 int x9 = x2.cache_vals[1];

6| x2.cache_keys[1] = x2.cache_keys[0];

7| x2.cache_vals[1] = x2.cache_vals[0];

3| x2.cache_keys[0] x7;

9| x2.cache_vals[@] = x9;

10 x2.timer = x2.timer + 1;

11 x9;

EIR R CH

13 int x10 = x2.mem[x7];

14 x2.mem[x2.cache_keys[1]] = x2.cache_vals[1];
15|  x2.cache_keys[1] = x2.cache_keys[0];

16| x2.cache_vals[1] = x2.cache_vals[0];

17| x2.cache_keys[0] x7;

15| x2.cache_vals[0] = x10;

19| // Reading from memory is slow

20| x2.timer = x2.timer + 100;

a1 x10;5 3));

2| x2.regs[2] = x8;

231 // if branch was mis-predicted as not taken,
24| // perform rollback

25| if (x2.regs[@] >= PRIVATE_MEM_START) {

26|  x2.timer = x2.timer + 15;

271 x2.regs[2] = x2.saved_regs[2];

28| x2.regs[1] = x2.saved_regs[1]; }

20| return x2;

Figure 8. Residue C program of the source nanoRISC pro-
gram of Fig. 4a with caching and staging.

which performs abstract interpretation of the input against
a parameterized abstract model of cache states to obtain an
overapproximation of all cache-based leakages for a given
abstract memory, cache and event model.

Osiris [16] performs hardware fuzzing to identify poten-
tial side-channel gadgets by observing that almost all mi-
croarchitecture attacks follow the pattern of prime-trigger-
measure, and thus generates instruction sequences that may
allow known microarchitectural components to leak mem-
ory through side channels. Fuzzing results can be used to
direct a collapsing-towers analysis by isolating possibly-
vulnerable code sections to avoid performing an expensive
whole-program analysis.

5 Conclusion and Future Work

This short paper presents our preliminary work towards
lightweight evaluation of software-hardware contracts through
specialization of a given hardware interpreter. We show how
a naive ISA interpreter can be staged to make timing infor-
mation explicit, allowing the software-hardware contract
to be stated purely in terms of first-order code. We also
demonstrate how the base interpreter can be extended to
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compositionally support microarchitecture features with rel-
atively simple modifications. We use each staged processor
to collapse a sample source assembly program into a residue
C program that reifies time as an ordinary C variable, so
that an off-the-shelf C bounded model checker can reason
about timing attacks. We highlight a sample source assembly
program tried on each processor variant, identifying timing
vulnerabilities in the cache and speculation variants but not
the base, as expected.

We claimed that the use of collapsing towers exposes
the invisible semantics of hardware to off-the-shelf tools.
Thus far, however, we have only achieved satisfactory re-
sults through enforcing noninterference via bounded model
checking. We intend to explore other directions or even de-
sign our own novel analyses (specialized to work on gener-
ated residues). The most promising techniques in our sights
are taint analysis and program slicing to detect whether the
timer depends on any secret value. A primary obstacle in im-
plementing such analyses on the residue immediately is that
the timer is never directly written to by a value within the
program. Instead, the timer only becomes tainted by implicit
flows induced by branching on a secret value.
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