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Abstract
Large language models (LLMs) are becoming increasingly
integrated into software development, with a majority of
developers now adopting AI tools for code generation. Al-
though the current models can often produce syntactically
and functionally correct code, they often generate unneces-
sarily complex solutions, and struggle with large, evolving
code bases that have rich internal structure. Most evalua-
tions of LLM-generated code to date have focused primarily
on test-based accuracy, unfairly overlooking other essential
aspects of software quality. In this paper, we emphasize the
importance of modularity — the practice of structuring code
into well-defined, reusable components — as a critical lens
for improving the maintainability of AI-generated code. We
argue that modularity should be a foundational principle
in LLM-assisted code generation, empowering models to
produce more maintainable, production-ready software.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Software design tech-
niques; Reusability; Source code generation; Automatic pro-
gramming; • Computingmethodologies→Machine learn-
ing approaches; Natural language processing; • Social and
professional topics→ Software maintenance.
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1 Introduction
Large language models (LLMs) are rapidly becoming more
adept at code generation. The latest models can often gen-
erate syntactically and functionally correct code, although
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typically without formal guarantees, and have thus become
ubiquitous among programmers for discharging tasks. A re-
cent StackOverflow survey shows that 76% of developers use
or plan to use AI coding tools [5].

However, while LLMs excel at generating code-based solu-
tions in isolation, software development as a whole requires
more than appropriate syntax and test-based accuracy. Large-
scale, maintainable software requires careful attention to
scope control, architectural consistency, and code simplicity
(among other best practices). Yet LLMs fall short in precisely
these areas: they often generate solutions that include extra-
neous functionality, struggle to maintain consistency across
files, and produce verbose implementations where simpler
solutions would suffice.

While all of these limitations impact code quality and de-
veloper experience, in this paper we focus on one crucial
limitation: LLMs’ failure to understand and respect mod-
ularity — a fundamental organizing principle that enables
software systems to scale without sacrificing long-termmain-
tainability. We demonstrate how this failure manifests both
when generating new systems and when modifying exist-
ing code bases, and argue that addressing modularity repre-
sents a critical next step for making AI-generated code truly
production-ready.

2 Why Modularity?
Modularity is a foundational principle in software engineer-
ing that promotes the decomposition of complex systems
into smaller, self-contained organizational units. Each such
unit represents a specific functionality and can interact with
the rest of the code base via an interface. This promotes logi-
cal organization of related code, careful dependency analysis
on the part of the programmer, and code reuse. In practice,
modularity can be defined at various levels of granularity,
from singular functions, to classes, modules, libraries, and
even entire applications. Most programming languages sup-
port modular programming paradigms; it is simply a matter
of consciously using them.

Modular design is held in high regard due to its significant
benefits for code production and maintenance. In large evolv-
ing code bases, modularity can increase production as differ-
ent modules can be built independently and concurrently by
team members. By supporting the separation of concerns,
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modularity allows developers to make contributions to tar-
geted functionality without needing to understand the entire
code base. Modularity decentralizes debugging, as compo-
nents can be tested independently and in conjunction with
the rest of the system. Finally, modular design can improve
code comprehension and documentation — an important
factor for long-term maintainability.

3 Position
Due to these benefits, modularity plays a critical role in pro-
ducing robust, scalable, and maintainable software. This is
why we believe it should be a key guiding principle for LLM-
assisted code generation. It is not enough for LLM-generated
code to appear modular by splitting functionality across mul-
tiple files or modules. Effective modularity requires coherent
boundaries, reusable abstractions, and minimal coupling:
principles that current LLM outputs often violate, despite
the surface structure. We believe that adherence to modular-
ity principles should be built into LLM-synthesized code by
default, supporting targeted, incremental refinement as the
code base evolves. In practice, this means LLMs must not
only generate modular structures that respect principles, but
also reason effectively about existing modular components,
helping programmers manage the complexity of evolving
code through edits, debugging, and test generation.
Current LLMs optimize for immediate completeness and

accuracy over architectural integrity and long-termmaintain-
ability. When given freedom over a full code base, LLMs tend
toward comprehensive (often over-engineered), boundary-
crossing solutions that may be functional on the surface,
but render the underlying code brittle. This approach un-
dermines effective modularity, compelling programmers to
resort to ad hoc strategies in an attempt to enforce it on
LLM-generated code. For example, when constrained to spe-
cific modules, via prompting or careful scaffolding (e.g., an
intermediate language layer), LLMs are often able to produce
appropriate, focused solutions that maintain long-term struc-
tural integrity. However, both prompting and scaffolding are
external strategies that place the burden of constraining
the LLM onto the programmer, while lacking consistent or
reproducible results. We believe that a more integrated ap-
proach to modularity would empower LLMs to internalize
such constraints, helping LLMs generate principled code
with minimal intervention from the programmer.

4 The State of Affairs
How close are we to fully leveraging modularity in LLM-
synthesized code? Our experiments suggest that modular
programming with LLMs still falls short across various as-
pects. We ran multiple experiments, some with the help of
Rubric DSL.1 Rubric is specifically designed to work with AI.
Its core purpose is not to generate programs by itself, but to
1Rubric DSL is available at https://rubric.midspiral.com

constrain, guide, and validate code generation and code base
architecture. It acts as a “semantic contract” layer between
natural language prompts and the AI output. Running our
experiments with the addition of Rubric alongside a baseline
LLM illustrates that LLMs alone are not currently capable
of generating proper architectural organization from only
high-level natural language prompts. Although the addition
of Rubric did not always lead to architectural excellence (this
was expected as Rubric is in early stages of development),
its overall positive impact points to a promising direction:
external constraint layers like Rubric can begin to encode
and enforce modular design principles that LLMs currently
fail to internalize, offering a path toward more principled
and maintainable AI-assisted software development.

Our experiments show that even with modular guidelines
— such as specification files, existing modular structure in
the code, or targeted prompting — the LLM often produced
code that appeared modular at a glance, but still violated the
principle through over-engineering, hidden dependencies,
and breaking changes.2 We discuss our insights below.

4.1 Modular Code from Scratch
As suggested by the existing studies in this area, LLMs can
produce modular code from scratch when prompted to do so
(whether via prompt decomposition, sketching and scaffold-
ing, or demonstrating modular reasoning during training),
and can even see performance gains on benchmarks as a
result [2, 3, 6, 8, 9]. Inspired by this related work, our first
goal was to examine whether an LLM would naturally pro-
duce modular code (without specification guidance), and
how explicit modular specifications would affect the gener-
ated architecture. To this end, we ran an experiment using
Cursor with Claude Sonnet 4 in which the coding task was to
generate an HTML / CSS / JavaScript mock blog dashboard.
Without any modular guidance, the LLM produced a mono-
lithic solution with all functionality in a single file (586 lines).
When provided with a Rubric specification defining modular
structure, the same prompt yielded a code base that exhibited
surface-level modularity — separate files for each compo-
nent, consistent interfaces, event-based communication, and
reusable design tokens. However, it still suffered from hid-
den dependencies between components, duplicated mock
data that required manual synchronization, and excessive
complexity. Despite the 4x increase in code size, the added
complexity did not translate to any additional functionality.
The outcome of this experiment suggests that, even with
specification guidance, LLMs can still underperform on the
facets of modularity that facilitate long-term maintainability.

2The code from our experiments, along with instructions on how to repro-
duce them, is available at https://github.com/graciolli-f/Modularity-Paper-
Experiments
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4.2 Working with Modular Code
4.2.1 Porting Code Base to React. Using the previously
generated dashboard code bases (monolithic and modular),
we tested the LLM’s ability to port theHTML / CSS / JavaScript
code to React. We expected that the modular code base would
be ported more effectively since its separation of concerns
maps naturally to React components. However, the LLM in-
troduced several bugs to the modular code, while the mono-
lithic code base ported cleanly in one shot. Although the
LLM was able to catch and fix most bugs introduced in the
modular code base during the porting process (i.e., before
surfacing the result to the user), one bug remained which
required five additional debugging prompts, gradually in-
creasing in specificity, to pinpoint and fix it.
Our impression from this experiment was that the LLM

tried to maintain — or, perhaps more accurately, mimic —
the current code base’s loose architectural philosophy, but
without adhering to any specific principle. So, the monolithic
code base was ported to React with minimal restructuring: it
maintained global functions and passed props directly. While
it was a clean port, the code base itself would not be suit-
able for production. On the other hand, the more modular
code base led the LLM to introduce unnecessary complexity:
over-engineered React-specific optimizations (e.g., useMemo,
useCallback, refs) that were not necessary given the origi-
nal implementation, and circular dependency issues. Rather
than recognizing that React’s built-in component model al-
ready provides modularity, the LLM seemed to amplify the
complexity signals it detected in the source code.

While this test provides an interesting comparison of the
LLM’s approach to a monolithic vs. modular code base, we
need to consider that the React framework uses a specific
approach to modularity and it’s possible that the existing
loosely modular organization did not match React’s patterns
making it more difficult to re-structure and port.

4.2.2 Targeted Edits. Lastly, we tested the LLM’s ability
to maintain modularity when making edits. For this, we used
a very simple modular Todo app with about 100 lines of code.
Each module had one responsibility, there were clean inter-
faces between modules, and we introduced private members.
We wanted to test the LLM’s targeted edits capabilities at
two levels: intra- and inter-module. Our test suite consisted
of four experiments with increasing architectural complex-
ity. Each experiment was performed with and without a
Rubric specification in the directory, to compare the baseline
capacity of the LLM to perform these tasks to its capacity
in a setting with some structural support. We present the
aggregated results from two independent runs below.

Experiment 1: Simple intra-module edit. We asked the
LLM to “Add priority field validation to the Todo model.” This
request clearly scoped to a single module. Without Rubric,

the LLM modified all four files in one of the runs – demon-
strating it may not neccessarily respect boundaries even
when the task is unambiguous. When using a Rubric specifi-
cation, only todo.js was modified as expected.

Experiment 2: Complex intra-module edit. We asked
the LLM to “Make the store support filtering todos by any field
dynamically.” Despite this being a single store-level feature,
the LLM modified multiple files, and most notably, turned
App.js into a test showcase in both runs. In one of the runs,
the LLM also added a complex query DSL and modified the
renderer. Including a Rubric specification ensured that only
store.js was modified.

Experiment 2a: Add constraints. To explore further and
find the limits of the baseline capacity of the LLM, we in-
troduced two progressively more strict constraints to the
prompt, leading the LLM to finally generate a clean, targeted
edit solution. First, we appended a simple directive to the
original prompt: “Respect modularity.” With this, the LLM
slightly reduced the complexity of its solution and modi-
fied fewer files, but still over-engineered by adding tests
and modifying the demo. Next, we appended “Only imple-
ment what is explicitly requested.” With this constraint, the
LLM was able to produce an appropriately scoped solution:
modification to one file, clean implementation, and a simple
API. Here we see that while LLMs are capable of respecting
module boundaries and maintaining architectural integrity,
they default to over-engineered solutions, unless defensive
prompting is included in the request. We believe this default
tendency should be reversed with a stronger bias for simpler
solutions constrained to modules, unless explicitly instructed
otherwise.

Experiment 3: Architectural recognition. For this test
we requested a feature without providing implementation
guidance: “Add functionality to get statistics about todos.” The
goal was to determine whether the baseline LLM would rec-
ognize the existing modular architecture of the code base,
and implement the new feature in a principled, modular fash-
ion. It did not; instead of creating a new uniquely responsible
module, it added the feature to the TodoStore. It also added
edits to multiple other files, and, most critically, introduced a
breaking change by modifying the add() method signature
in one of the runs. When provided with a Rubric specifica-
tion, the LLM did successfully implement the feature in a
new module.

Experiment 4: Module integration. Lastly, we tested
the LLM’s ability to create a new module when explicitly
instructed to do so, and then integrate it into the existing
system: “Add a new stats module that counts todos by sta-
tus.” While the LLM was able to generate a proper, clean
stats.js module, it then violated encapsulation in one
of the runs by directly accessing private store members
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(_nextId and _todos) instead of using the available pub-
lic API. With Rubric, no such violations were witnessed.
This encapsulation violation directly undermines modu-

larity. By accessing private members, the LLM created hid-
den dependencies between modules, making them no longer
truly modular. The LLM generated code with the appearance
of modularity (separate files, dependency injection) while
violating the very principles that make modularity valuable.
This is evidence of architectural mimicry without adherence
to the underlying architectural principles.

5 Discussion
Our experiments reveal a fundamental challenge with the
current state of LLM-assisted programming: while modular-
ity is essential for buildingmaintainable production software,
LLMs consistently violate modular principles by default. A
lot of emphasis (training, research, benchmarking) has been
placed on accuracy, but even a perfectly correct function that
ignores established interfaces, for example, undermines the
integrity of the very code base it was tasked with improving.
Here we discuss the implications of our findings and explore
potential paths forward.

5.1 Encoding Principles
In our experiments, we repeatedly observed the LLM treating
modularity as a pattern to mimic, rather than an underlying
principle for decision-making. This gap between pattern and
principle was illustrated in our module integration experi-
ment, where the LLM chose the path for creating a new mod-
ule that violated existing boundaries, despite there already
being an established path that respected boundaries (public
API). Humans have the ability to create a mental representa-
tion of “modular design” and make implicit decisions based
on this representation. How can we similarly encode princi-
ples — not mere patterns — into the LLM’s decision-making
process? We outline a few potential approaches below.

Modularity Training. If modularity is to become a guid-
ing principle in LLM code generation, this emphasis must
begin with training. Just as careful planning improves the
quality of execution, targeted training can cultivate modular-
ity, encouragingmodels to decompose problems thoughtfully
before attempting solutions. To accomplish this, models can
be trained to have a stronger bias toward respecting modular
boundaries rather than complete solutions — for example,
training on examples where restraint is rewarded, and more
resources are allotted to task breakdown and mapping. We
must also train models to prioritize minimal, conservative
edits over sweeping changes across components.

Built-in Metrics. LLMs excel at following concrete rules
(e.g., “must not access any property or method from another
module that starts with _”), but struggle to evaluate more ab-
stract qualities (e.g., “avoid tight coupling”). We could lean on

the LLM’s strengths and use concrete metrics (e.g., the num-
ber of external dependencies of a module) and unambiguous
rules (e.g., “must not introduce any new dependencies to this
module”) that serve as a proxy for modular reasoning. This
approach, especially if implemented via a DSL like Rubric,
also opens the door to runtime validation which can flag
boundary violations that can be fed back to the LLM for
real-time adjustments. Ultimately, while metrics and rules
are not internal to the LLM itself, they can be part of the val-
idation strategy built into the broader tooling and developer
workflow.

Structured Support. To support the LLM in generating
quality modular code, we can set up structured scaffolding
that acts as the LLM’s internal representation of the modular
principles. The LLM should be able to refer to this scaffold-
ing when making decisions during code generation. This
structured scaffolding could manifest in different ways. For
example, the LLM could keep an internal network of log files,
tracking the architecture of the repository, the concepts rep-
resented by components, and any feature edits introduced
over time. The LLM could automatically generate and con-
sider high-level artifacts, such as dependency graphs, as part
of its context alongside code. Structure could also be enforced
by employing verification or static analysis techniques, such
as code flow analysis (CFA) or constraint checking during
code generation, serving as a safeguard against boundary
breaking code.

Flexibility. One important limitation of modularity is
that, realistically, the optimal modular breakdown will be
project- and language-specific, and we cannot pick a single
approach in advance. This is evidenced by our porting ex-
periment, where approaches to modularity differed in the
source and target, resulting in a suboptimal port. Further-
more, changing requirements over time may alter any exist-
ing modular structure. With this limitation in mind, modu-
lar code generation via LLMs should be approached as an
evolving design and refactoring process, and not as a fixed
solution.

5.2 Specialized Benchmarking
Benchmarking LLM performance with respect to modular-
ity presents unique challenges. Most existing benchmarks
are designed to assess code accuracy, and contain single-file
programs that tackle isolated tasks. As such, they are not
sufficient to evaluate the ability of LLMs to produce modular,
maintainable, and scalable code. Measuring modularity is
more nebulous than measuring correctness: it is a multidi-
mensional property that depends on principles like separa-
tion of concerns, clarity of APIs, and code reuse. There is
usually no single “correct” breakdown of a program intomod-
ular components, making ground truth comparison infeasi-
ble. Additionally, the benefits of modularity often emerge
over time in refactoring or debugging, and are difficult to
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capture in static benchmarks. Recent work has begun to
move the needle in this direction, with Zhong and Wang
[10] presenting a benchmark for evaluating the reliability
and robustness of LLM-generated code, focusing mainly on
API misuses. While this is a great step toward a more ro-
bust assessment, there is still work to be done to support an
empirical assessment of modularity. New benchmarks that
attempt to bridge this gap could feature both monolithic and
modular versions of the same code, supporting direct com-
parisons of design quality and maintainability. For a more
comprehensive assessment of modular design, benchmarks
could include projects with complex component structure
and dependencies across files that better reflect real-world
software frameworks. While a single metric cannot capture
modularity, there are many ways to quantify modular qual-
ities of code – from established metrics like coupling and
cohesion, to customized project-related criteria. The priority
is not to achieve flawless modular design, but to recognize
and assess modularity as a key quality of LLM-generated
code.

6 Related Work
The difficulty in building robust and maintainable systems
has long been recognized. In his seminal essay, Brooks [1]
argues that the complexities of building andmaintaining soft-
ware lie in the specification, design, and testing of interlock-
ing concepts. One difficulty he points out is changeability:
software evolves over time due to new applications and ex-
tensions, and due to outliving its hardware. Brooks mentions
that modular design may reduce the labor costs of generat-
ing test suites, as well as help with long-term maintenance
and testing of the evolving code base. Brooks also argues
that the difficulty of creating conceptually complex code can
be mitigated by reusing already built software components.
These sentiments still remain relevant today.

Work in LLM-assisted program synthesis has embraced
decomposition as a mechanism for improving reasoning
and the quality of generated code. For example, Parsel [9]
decomposes implementation tasks into strongly connected
components, solutions to which are then synthesized auto-
matically. Similarly, ANPL [2] decomposes a programming
task into a dataflow sketch that provides structure, and natu-
ral language holes that can be implemented or decomposed
further. Other methods rely more heavily on prompting: the
DeAR framework [8] uses question decomposition to build a
reasoning tree, solves sub-questions at each node, and prop-
agates the information back up the tree for a final composite
answer at the root. Chain-of-Thought prompting [6] relies on
demonstrating intermediate reasoning steps during prompt-
ing to elicit similarly structured multi-step responses. Others
focus on training: Jain et al. [3] investigate the benefits of
LLM-assistedmodularization for trainingmore accurate code
generators, seeing gains in benchmark performance by up

to 30%. Other works focus on decomposition-aided debug-
ging. For example, Wen et al. [7] explore decomposition as a
way to assist human programmers in debugging synthesized
code, where each solution is broken down into smaller pieces
that are easier for the human to repair. Shi et al. [4] use de-
composition as an aid in automated debugging by breaking
code down into a tree of sub-functions and resolving bugs
at different levels of granularity (corresponding to different
levels in the tree). These results imply that code modular-
ity can be helpful for both humans and automated tools in
isolating bugs.

7 Conclusion
As LLMs continue advancing at code generation and devel-
opers embrace them as part of their workflow, it is no longer
sufficient to focus solely on the accuracy of the generated
code. To ensure that LLM-generated code can reliably evolve
through incremental development, and remain maintainable
over time in production environments, modularity should
become a guiding principle for LLM code generation. By
deeply leveraging modular design rather than mimicking
modularity, LLMs can generate code that is easier to debug,
extend, and integrate. Embracing modularity is a key next
step to advance LLMs from lump code generators to effective
collaborators.
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